

Outline				Notes
Recap and Motivation				
Expanding RNN Memory Beyo	ond a Single Hidden State			
Attention Mechanisms				
Transformer Architecture for L	anguage Modeling			
Training Transformer Models				
 Pretraining and Fine-Tuning T 	ransformers			
Transformer Setup Variants: G	GPT, Full Transformer, and BERT			
			≣ ୬ବ୍ଜ	
Nadi Tomeh	Generative Models for NLP	7/2/25	2 / 46	

Outline

- Recap and Motivation
- Expanding RNN Memory Beyond a Single Hidden State
- Attention Mechanisms
- Transformer Architecture for Language Modeling
- Training Transformer Models
- Pretraining and Fine-Tuning Transformers
- Transformer Setup Variants: GPT, Full Transformer, and BERT

		・ロ・・四・ ・ヨ・ ・ヨ・	E
Nadi Tomeh	Generative Models for NLP	7/2/25	3 / 46

Recap of RNN-Based Language Models

Quick Review

- RNN/GRU/LSTM Architectures: These architectures process sequences token by token, updating a hidden state h_t at each step t.
 - h_t captures the information from all previously seen tokens.
 - GRUs and LSTMs introduce gating mechanisms to mitigate vanishing or exploding gradients.
- Hidden State h_t:
 - Serves as a summary (or *memory*) of the sequence up to position t.
 - Used for predicting the next token in a language modeling setup:

 $p(w_{t+1} \mid w_1 \dots w_t) \approx g_{\theta}(h_t),$

where h_t evolves from the previous hidden state and the current input token embedding.

Limitations of RNN-Based Models

Sequential Dependence:

- For a sequence of length n, RNNs require O(n) steps of recurrent updates. Can be slow and hard to parallelize.
- Difficulty Capturing Long-Range Context:
 - Even LSTMs/GRUs can struggle with extremely distant dependencies, as gradients still degrade over many timesteps.

Nadi Tomeh

Generative Models for NLP

4 / 46

7/2/25

Notes

Why RNNs Cannot Be Parallelized Across Time

Core Recurrence Equation

In a n RNN, the hidden state $h_t \in \mathbb{R}^m$ at time t is defined by a recurrence of the form:

$$\boldsymbol{h}_t = f_{\boldsymbol{\theta}} (\boldsymbol{h}_{t-1}, \boldsymbol{w}_t)$$

Forward Pass Constraint

Because h_t depends on h_{t-1} , each state must be computed in sequence:

$$\boldsymbol{h}_1 \rightarrow \boldsymbol{h}_2 \rightarrow \cdots \rightarrow \boldsymbol{h}_t.$$

We cannot compute h_t until we have h_{t-1} . This prohibit parallelizing over time steps in the forward pass.

BPTT Perspective

The gradient w.r.t. h_{t-1} involves a Jacobian term:

$$\frac{\partial \ell}{\partial \boldsymbol{h}_{t-1}} = \frac{\partial \ell}{\partial \boldsymbol{h}_t} \frac{\partial \boldsymbol{h}_t}{\partial \boldsymbol{h}_{t-1}} + \cdots$$

where $\frac{\partial h_t}{\partial h_{t-1}}$ must be known before updating h_{t-1} : gradients also have to be propagated *step-by-step*.

Nadi Tomeh

Generative Models for NLP

7/2/25

5/46

h_t as Memory: Markovian Perspective and Short Memory

Hidden State h_t as a Memory of the Past

In an RNN, the hidden state $\boldsymbol{h}_t \in \mathbb{R}^m$ evolves via:

 $\boldsymbol{h}_t = f_{\boldsymbol{\theta}} (\boldsymbol{h}_{t-1}, \boldsymbol{x}_t),$

capturing all past inputs $\{x_1, \ldots, x_t\}$ through a single vector.

 Intuitively, h_t serves as the network's internal memory, summarizing prior context relevant for predicting future tokens.

Markovian and Geometric Ergodicity

• **h**_t forms a **Markov chain** in the hidden-space:

$$p(\boldsymbol{h}_t \mid \boldsymbol{h}_{t-1}, \boldsymbol{h}_{t-2}, \dots) = p(\boldsymbol{h}_t \mid \boldsymbol{h}_{t-1}).$$

• Under mild contractive conditions on f_{θ} (e.g., Lipschitz constant < 1 in a bounded region), the Markov chain is *geometrically ergodic*: For any two initial states h_0 and h'_0 , we have

 $\|\boldsymbol{h}_t - \boldsymbol{h}'_t\| \leq \lambda^t \|\boldsymbol{h}_0 - \boldsymbol{h}'_0\|, \text{ for some } 0 < \lambda < 1.$

The result is Exponential Forgetting: The influence of initial states h₀ vanishes at a rate λ^t.

Notes

Outline

- Recap and Motivation
- Expanding RNN Memory Beyond a Single Hidden State
- Attention Mechanisms
- Transformer Architecture for Language Modeling
- Training Transformer Models
- Pretraining and Fine-Tuning Transformers
- Transformer Setup Variants: GPT, Full Transformer, and BERT

		・ロト ・四ト ・ヨト ・ヨト	∃ < <p> < <p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p></p>
Nadi Tomeh	Generative Models for NLP	7/2/25	7 / 46

Bottleneck of a Single Hidden State h_t

Recurrence in a Standard Elman RNN LM

Hidden state update:

 $\boldsymbol{h}_t = \tanh(\boldsymbol{W}_{xh}\boldsymbol{x}_t + \boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{b}_h).$

Prediction logits:

 $\boldsymbol{z}_t = \boldsymbol{W}_{hy} \boldsymbol{h}_t + \boldsymbol{b}_y, \quad \boldsymbol{p}_t = \operatorname{softmax}(\boldsymbol{z}_t), \quad \boldsymbol{p}_{\boldsymbol{\theta}}(w_{t+1} \mid w_{1:t}) = \boldsymbol{p}_{t, w_{t+1}}.$

Generative Models for NLP

• $\boldsymbol{h}_t \in \mathbb{R}^m, \ \boldsymbol{x}_t \in \mathbb{R}^d, \ \boldsymbol{W}_{xh} \in \mathbb{R}^{m \times d}, \ \boldsymbol{W}_{hh} \in \mathbb{R}^{m \times m}, \ \boldsymbol{W}_{hy} \in \mathbb{R}^{|\mathcal{V}| \times m}, \ \text{etc.}$

The Bottleneck

Nadi Tomeh

- **h**_t must encode all relevant history in a single vector of size m.
- As t grows, h_t struggles to maintain detailed information about very distant tokens.
- This can degrade the accuracy of z_t (the logits) and thus the next-word distribution.

イロト イクト イヨト オヨト ヨークへで 7/2/25 8/46

Storing All Previous Hidden States in \mathcal{M}_t

Notes

Expandable Memory

• Instead of relying purely on h_t , we keep each past hidden state:

 $\mathcal{M}_t = \{\boldsymbol{h}_1, \, \boldsymbol{h}_2, \, \dots, \, \boldsymbol{h}_t\}.$

- Each $h_{\tau} \in \mathbb{R}^m$ can be viewed as an encoding of the input at time τ .
- *M_t* expands over time, forming a dynamically growing repository of contextual vectors.

Context Vector \boldsymbol{c}_t

• We combine the memory vectors in M_t into a single $c_t \in \mathbb{R}^m$, representing the *relevant* information from $\{h_1, \ldots, h_t\}$.

Generative Models for NLP

• Next, we incorporate c_t along with h_t to predict:

 $\boldsymbol{z}_t = \boldsymbol{W}_{cy} [\boldsymbol{h}_t; \boldsymbol{c}_t] + \boldsymbol{b}_y, \quad \boldsymbol{p}_t = \operatorname{softmax}(\boldsymbol{z}_t).$

• Here, $[\boldsymbol{h}_t; \boldsymbol{c}_t] \in \mathbb{R}^{2m}$ is the concatenation; $\boldsymbol{W}_{cv} \in \mathbb{R}^{|\mathcal{V}| \times 2m}$.

7/2/25 9/46

(ロト 4月) 4日) 4日) 日 うらう

7/2/25

Combining the Memory Vectors $\mathcal{M}_t = \{\boldsymbol{h}_1, \dots, \boldsymbol{h}_t\}$ into a Context Vector I

Naive Summation or Averaging

Nadi Tomeh

$$\boldsymbol{c}_t = \sum_{\tau=1}^{t} \boldsymbol{h}_{\tau}$$
 or $\boldsymbol{c}_t = \frac{1}{t} \sum_{\tau=1}^{t} \boldsymbol{h}_{\tau}.$

All vectors contribute equally, often losing important distinctions among tokens (no weighting).

Hard Selection (One-Hot or Multi-Hot)

Nadi Tomeh

• Define a discrete vector $\boldsymbol{\alpha}_t \in \{0,1\}^t$, then:

$$\boldsymbol{c}_t = \frac{1}{\sum_{\tau=1}^t \alpha_{t,\tau}} \sum_{\tau=1}^t \alpha_{t,\tau} \boldsymbol{h}_{\tau}$$

- **One-hot:** exactly one entry $\alpha_{t,\tau^*} = 1$, rest 0.
- Multi-hot: could select multiple h_τ simultaneously.
- Non-differentiable w.r.t. $\alpha_{t,\tau}$, complicates gradient-based learning.

Generative Models for NLP

10/46

Differentiable Soft Selection

• Let $\alpha_{t,\tau} \in [0,1]$ with $\sum_{\tau=1}^{t} \alpha_{t,\tau} = 1$.

$$\boldsymbol{c}_t = \boldsymbol{\alpha}_t^{\top} \cdot \boldsymbol{h}_t = \sum_{\tau=1}^t \alpha_{t,\tau} \, \boldsymbol{h}_{\tau}.$$

- c_t is a weighted combination of memory vectors, focusing on relevant ones.
- $\{\alpha_{t,\tau}\}$ can be learned end-to-end with backprop.

		・ロ・・西・・田・ ・田・	≡ ∽へぐ
Nadi Tomeh	Generative Models for NLP	7/2/25	11 / 46

Outline				Notes
 Recap and Motivation 				
 Expanding RNN Memory Beyo 	ond a Single Hidden State			
Attention Mechanisms				
 Transformer Architecture for L 	.anguage Modeling			
 Training Transformer Models 				
 Pretraining and Fine-Tuning T 	ransformers			
 Transformer Setup Variants: G 	PT. Full Transformer, and BERT			
		() () () () () () () () () ()	≣	
Nadi Tomeh	Generative Models for NLP	7/2/25	12 / 46	

Learning the Weights $\alpha_{t,\tau}$ with Attention

Attention as a Similarity-Based Weighting

- We want to find how much each past hidden state h_{τ} (for $\tau = 1, \ldots, t-1$) contributes to the current context.
- Define a score function $e_{t,\tau}$ that measures the similarity between h_t (the "query") and h_{τ} (the "key").

$$s_{t,\tau} = \sin(\boldsymbol{h}_t, \boldsymbol{h}_{\tau}).$$

• We then convert these raw scores $\{e_{t,\tau}\}$ into attention weights via a softmax:

$$\alpha_{t,\tau} = \frac{\exp(\mathbf{s}_{t,\tau})}{\sum_{k=1}^{t-1}\exp(\mathbf{s}_{t,k})}, \quad \text{for} \quad \tau = 1, \dots, t-1 \quad \text{This ensures } \sum_{\tau=1}^{t-1} \alpha_{t,\tau} = 1.$$

Context Vector c_t Using Learned Weights

$$\boldsymbol{c}_t = \sum_{\tau=1}^{t-1} \alpha_{t,\tau} \boldsymbol{h}_{\tau}$$

• The $\alpha_{t,\tau}$ are learned dynamically based on the similarity of h_t and h_{τ} , focuses on relevant past states.

Nadi Tomeh Generative Models for NLP

Four Common Similarity (Score) Functions I

1. Dot Product

 $s_{t,\tau} = \boldsymbol{h}_t^\top \boldsymbol{h}_{\tau},$

where $\boldsymbol{h}_t, \boldsymbol{h}_\tau \in \mathbb{R}^m$.

- Simple and fast; purely linear similarity.
- Works well if the norms $\|\boldsymbol{h}_t\|$ and $\|\boldsymbol{h}_{\tau}\|$ are not too large.

2. Scaled Dot Product (Vaswani)

$$s_{t,\tau} = \frac{\boldsymbol{h}_t^{\top} \boldsymbol{h}_{\tau}}{\sqrt{m}},$$

Generative Models for NLP

where again $\boldsymbol{h}_t, \boldsymbol{h}_\tau \in \mathbb{R}^m$.

- Dividing by \sqrt{m} (the dimension of **h**) prevents large dot-product values.
- Popular in Transformer architectures.

7/2/25

13/46

Notes

Four Common Similarity (Score) Functions II

3. Bilinear (Luong Attention)

$$\boldsymbol{s}_{t, au} = \boldsymbol{h}_t^\top \boldsymbol{W}_{ ext{attn}} \boldsymbol{h}_{ au}, \quad \boldsymbol{W}_{ ext{attn}} \in \mathbb{R}^{m imes m}$$

• Learns a transformation of h_{τ} before comparing to h_t .

- More expressive than a raw dot product, but adds $\mathcal{O}(m^2)$ parameters.

4. MLP (Additive / Bahdanau Attention)

$$\boldsymbol{s}_{t,\tau} = \boldsymbol{v}_{\boldsymbol{a}}^{\top} \tanh \left(\boldsymbol{W}_{\boldsymbol{a}} \boldsymbol{h}_{t} + \boldsymbol{U}_{\boldsymbol{a}} \boldsymbol{h}_{\tau} \right),$$

where $\boldsymbol{W}_{a}, \boldsymbol{U}_{a} \in \mathbb{R}^{m \times m}, \ \boldsymbol{v}_{a} \in \mathbb{R}^{m}$.

- Uses a small neural network for scoring each pair (h_t, h_{τ}) .
- Potentially more flexible than dot-based approaches, but computationally heavier.

		・ロト ・部ト ・ヨト ・ヨト	E nac
Nadi Tomeh	Generative Models for NLP	7/2/25	15 / 46

Extending RNNs to Sequence-to-Sequence Models

Goal: Machine Translation (MT) Example

- Input (source sequence): $(w_1^{src}, \ldots, w_n^{src})$.
- Output (target sequence): $(w_1^{trg}, \ldots, w_m^{trg})$.
- We want to learn $p_{\theta}(w_1^{\text{trg}}, \ldots, w_m^{\text{trg}} \mid w_1^{\text{src}}, \ldots, w_n^{\text{src}})$, a *conditional* generative model.

Encoder–Decoder Architecture

- **Encoder (RNN)**: Processes the source tokens into hidden states $\{h_1^{enc}, \ldots, h_n^{enc}\}$.
- **Decoder (RNN)**: Generates target tokens (w_t^{trg}) one by one, conditioning on the encoder outputs.
- Without attention, the decoder uses only the *final* encoder hidden state (a single vector) as a context:

$$\boldsymbol{h}_{\mathrm{context}} = \boldsymbol{h}_{n}^{\mathrm{enc}}.$$

• Limitation: A single fixed-size vector h_n^{enc} must encode the entire source sentence: bottleneck, again.

Nadi Tomeh

イロシ イヨシ イヨシ オヨシ ヨ 少へで 7/2/25 16/46

Integrating Attention in Seq2Seq (Bahdanau et al.)

Attention Over Encoder Hidden States

- Instead of relying on $\boldsymbol{h}_n^{\text{enc}}$ alone, maintain a memory of $\{\boldsymbol{h}_1^{\text{enc}}, \dots, \boldsymbol{h}_n^{\text{enc}}\}$.
- At each decoder timestep *t*:

$$\boldsymbol{c}_{t}^{\text{enc}} = \sum_{\tau=1}^{n} \alpha_{t,\tau} \, \boldsymbol{h}_{\tau}^{\text{enc}}, \quad \alpha_{t,\tau} = \frac{\exp(\boldsymbol{s}(\boldsymbol{h}_{t}^{\text{dec}}, \, \boldsymbol{h}_{\tau}^{\text{enc}}))}{\sum_{k=1}^{n} \exp(\boldsymbol{s}(\boldsymbol{h}_{t}^{\text{dec}}, \, \boldsymbol{h}_{k}^{\text{enc}}))}$$

where $\boldsymbol{h}_t^{\text{dec}} \in \mathbb{R}^m$ is the current decoder hidden state.

• The $\alpha_{t,\tau}$ measure how relevant the encoder's state $\boldsymbol{h}_{\tau}^{\text{enc}}$ is at decoding step t.

Context-Augmented Decoder State

• The decoder RNN update can then incorporate c_t^{enc} (plus h_{t-1}^{dec} , the previous decoder state) to predict:

$$\boldsymbol{h}_{t}^{ ext{dec}} = f_{\boldsymbol{ heta}} \left(\boldsymbol{h}_{t-1}^{ ext{dec}}, \, \boldsymbol{w}_{t}^{ ext{rg}}, \, \boldsymbol{c}_{t}^{ ext{enc}}
ight) \quad \text{and} \quad p_{\boldsymbol{ heta}} \left(\boldsymbol{w}_{t}^{ ext{trg}}
ight) = ext{softmax} \left(\boldsymbol{W}_{hy} \, \boldsymbol{h}_{t}^{ ext{dec}} + \boldsymbol{b}_{y}
ight)$$

Result: A trainable alignment matrix α via attention, letting the model focus on relevant source positions for each target word. A L PARPARE PARPARE PARPA Generative Models for NLP

Generative Models for NLP

```
Nadi Tomeh
```

7/2/25

17 / 46

Outline

- Recap and Motivation
- Expanding RNN Memory Beyond a Single Hidden State
- Attention Mechanisms
- Transformer Architecture for Language Modeling
- Training Transformer Models

Nadi Tomeh

- Pretraining and Fine-Tuning Transformers
- Transformer Setup Variants: GPT, Full Transformer, and BERT

7/2/25 18/46

Notes

Overview and Motivation

Notes

Notes

Goal: Autoregressive Language Modeling

• We want a next-token distribution:

 $p_{\theta}(w_{t+1} \mid w_1, \ldots, w_t),$

but without RNN recurrence.

• **Decoder-Only Transformer**: Each token attends to all prior tokens *in parallel*, using a **mask** to maintain causal order.

High-Level Steps (One Layer)

- 1. Multi-Head Self-Attention (masked).
- 2. Positional Encodings to inject sequence ordering.
- 3. Residual + LayerNorm.
- 4. Feed-Forward Network (FFN) (applied to each token).
- 5. Another Residual + LayerNorm.

Stacked for *L* layers, then project to output logits.

Nadi Tomeh Generative Models for NLP

Masked Multi-Head Self-Attention I

Token-by-Token Equations

Setup: We have *n* tokens, each with embedding $\mathbf{x}_i \in \mathbb{R}^d$, for i = 1, ..., n.

• Per-token query, key, value:

$$oldsymbol{q}_i = oldsymbol{W}^Q oldsymbol{x}_i \in \mathbb{R}^{d_k}, \quad oldsymbol{k}_j = oldsymbol{W}^K oldsymbol{x}_j \in \mathbb{R}^{d_k}, \quad oldsymbol{v}_j = oldsymbol{W}^V oldsymbol{x}_j \in \mathbb{R}^{d_v},$$

where $\boldsymbol{W}^Q, \boldsymbol{W}^K \in \mathbb{R}^{d imes d_k}, \ \boldsymbol{W}^V \in \mathbb{R}^{d imes d_v}$

Scores and softmax:

$$s_{i,j} = \frac{\boldsymbol{q}_i' \, \boldsymbol{k}_j}{\sqrt{d_k}}, \quad \alpha_{i,j} = \frac{\exp(\boldsymbol{s}_{i,j})}{\sum_{m=1}^n \exp(\boldsymbol{s}_{i,m})}$$

• Attention output for token *i*:

$$\boldsymbol{y}_i = \sum_{j=1}^n \alpha_{i,j} \, \boldsymbol{v}_j.$$

Generative Models for NLP

< A

7/2/25

3

19/46

Nadi Tomeh

Notes

Matrix Form Equations (All Tokens in Parallel)

Collect token embeddings \mathbf{x}_i into matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$: $\mathbf{X} = [\mathbf{x}_1^\top; \dots; \mathbf{x}_1^\top]$.

$$Q = X W^{Q} \in \mathbb{R}^{n \times d_{k}}, \quad K = X W^{K} \in \mathbb{R}^{n \times d_{k}}, \quad V = X W^{V} \in \mathbb{R}^{n \times d_{v}}.$$

Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{Q K^{\top}}{\sqrt{d_{k}}}\right) V, \quad \in \mathbb{R}^{n \times d_{v}}.$

Each row of the result is \mathbf{y}_i^{\top} , matching the per-token outputs \mathbf{y}_i from the single-element view.

		▲□ > ▲御 > ▲ 田 > ▲ 田 >	ヨー うくぐ
Nadi Tomeh	Generative Models for NLP	7/2/25	21 / 46

Masked Multi-Head Self-Attention III

Masked Self-Attention (Causal LM)

- For **autoregressive** language modeling, token *i* must *not* attend to tokens j > i.
- We add a $\boldsymbol{M} \in \mathbb{R}^{n \times n}$:

$$\boldsymbol{M}[i,j] = \begin{cases} 0, & \text{if } j \leq i \\ -\infty, & \text{if } j > i \end{cases}$$

Then:

$$\boldsymbol{Q} \, \boldsymbol{K}^{ op} + \boldsymbol{M} \quad \xrightarrow{\text{softmax}} \in \mathbb{R}^{n imes n} ext{ ensures each row } i ext{ ignores columns } j > i.$$

• Output shape still $\mathbb{R}^{n \times d_v}$, but strictly *left-to-right* in coverage.

Example: n = 4 Tokens

	/0	$-\infty$	$-\infty$	$-\infty$	Token visibility:
м _	0	0	$-\infty$	$-\infty$	 Token #1 sees no preceding tokens (only itself).
M =	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{pmatrix} -\infty \\ 0 \end{pmatrix}$	Token #2 sees #1 and itself, but not #3 or #4.Etc.

7/2/25

22 / 46

Multi-Head Extension

Multiple sets of $\boldsymbol{W}_{i}^{Q}, \boldsymbol{W}_{i}^{K}, \boldsymbol{W}_{i}^{V}$ for $i = 1, \dots, h$.

head_i = Attention $\left(\boldsymbol{X} \boldsymbol{W}_{i}^{Q}, \boldsymbol{X} \boldsymbol{W}_{i}^{K}, \boldsymbol{X} \boldsymbol{W}_{i}^{V} \right) \in \mathbb{R}^{n \times d_{v}}.$

Concatenate heads:

 $\text{MultiHead}(\boldsymbol{X}) = \text{Concat}(\mathsf{head}_1, \dots, \mathsf{head}_h) \ \boldsymbol{W}^O, \quad \boldsymbol{W}^O \in \mathbb{R}^{(h \cdot d_v) \times d}.$

Why multi-head?

Different heads can specialize: e.g., local vs. distant context, syntactic vs. semantic cues, etc.

Nadi Tomeh	

Generative Models for NLP

The Problem of Order and the Role of Positional Encodings

Permutation-Invariant Attention

- So far, **self-attention** alone (without masks or positional info) is inherently *permutation-invariant*: Swapping token i with token j in X just permutes the rows of Q, K, V, and thus permutes the output as well.
- Why is this a problem?
 - A sentence like Cat chases dog conveys a different meaning if tokens are rearranged to Dog chases cat.
 - Pure attention sees token embeddings as a set with no inherent notion of "first token," "second token," etc.

Positional Encodings: Injecting Order

- We assign each position *i* a vector $PE(i) \in \mathbb{R}^d$.
- Then we **add** PE(i) to the original token embedding x_i :

 $\mathbf{x}_i' = \mathbf{x}_i + \mathrm{PE}(i).$

• The model's self-attention layers now see x'_i , which encodes both the token's identity and its position.

Learned vs. Sinusoidal

- Learned position embeddings: we maintain a parameter table $\boldsymbol{P} \in \mathbb{R}^{n_{\max} \times d}$, so PE(i) is just $\boldsymbol{P}[i,:]$.
- Sinusoidal: uses sines and cosines at different frequencies to represent positions.

(ロ・・日・・日・・日・・(日・・日・) 7/2/25

24 / 46

イロト (日本) (日本) (日本) (日本) (日本)

23/46

7/2/25

Notes

Generative Models for NLP

Sinusoidal Positional Encodings I

Notes

Formula

$$PE(pos, 2j) = sin\left(\frac{pos}{10000^{2j/d}}\right), PE(pos, 2j+1) = cos\left(\frac{pos}{10000^{2j/d}}\right).$$

where $pos = position index \in \{0, 1, ...\}$, and 2j, 2j + 1 index the even/odd dimensions in \mathbb{R}^d .

Why Sinusoids?

- **Relative Offsets**: $PE(pos_2) PE(pos_1)$ can be learned by the model to represent "distance" between positions.
- Periodicity: The model can exploit trigonometric functions to detect repeating patterns (e.g., rhythmic or periodic structure).
- No Extra Parameters: These are fixed functions, so no large parameter table is needed.

Nadi Tomeh

Generative Models for NLP

Sinusoidal Positional Encodings II

Relative Offsets: Encoding Distance Between Tokens

• The difference between two positional encodings encodes relative position information:

$$\operatorname{PE}(\operatorname{\textit{pos}}_2) - \operatorname{PE}(\operatorname{\textit{pos}}_1) = 2\cos\left(\frac{\operatorname{\textit{pos}}_1 + \operatorname{\textit{pos}}_2}{2 \cdot 10000^{2j/d}}\right)\sin\left(\frac{\operatorname{\textit{pos}}_2 - \operatorname{\textit{pos}}_1}{2 \cdot 10000^{2j/d}}\right)$$

- The model can learn to use this difference to infer **how far apart two tokens are**, rather than relying on absolute positions.
- This helps generalize to longer sequences beyond those seen in training.

Periodicity: Capturing Repeating Patterns

• The sinusoidal function is **periodic**, meaning:

 $\sin(x) = \sin(x + 2\pi k), \quad \forall k \in \mathbb{Z}.$

- Different frequency components allow the model to capture:
 - Short-range dependencies (small denominator: high frequency).
 - Long-range dependencies (large denominator: low frequency).

Nadi Tomeh

7/2/25 26/46

・ロト・西ト・モン・モン・ ビー もくの

イロト (日本) (日本) (日本) (日本) (日本)

25 / 46

7/2/25

Sinusoidal Positional Encodings III

Notes

Notes

28 / 46

7/2/25

Example: d = 6, pos = 0...3

- Suppose d = 6. Then half of those (3 dims) are sines (even indices: 0,2,4), half (odd indices: 1,3,5) are cosines.
- For positions pos = 0, 1, 2, 3, you might get:

$$PE(0) = \begin{pmatrix} \sin(0) \\ \cos(0) \\ \sin(0/10000^{1/3}) \\ \cos(0/10000^{1/3}) \\ \sin(0/10000^{2/3}) \\ \cos(0/10000^{2/3}) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

• For pos = 1, these become small angles in some coordinates; for pos = 2, 3, the angles grow accordingly.

		・ロン ・四 と ・ 言 と ・ 言 と	き うくぐ
Nadi Tomeh	Generative Models for NLP	7/2/25	27 / 46

Residual + Layer Normalization I

Residual Connections

• Let $Z = (Multi-Head Attn or FFN output) \in \mathbb{R}^{n \times d}$, then the output becomes:

 $\mathbf{X}' = \mathbf{X} + \mathbf{Z}.$

- Better gradient flow: The gradient can "skip" sub-layers if needed, preventing severe vanishing/exploding issues in deep networks.
- Stabilizes training: Each sub-layer only needs to learn a "residual" function around the identity. In practice, deeper models converge faster and more reliably.

Residual + Layer Normalization II

LayerNorm

$$\text{LayerNorm}(\boldsymbol{x}) = \frac{\boldsymbol{x} - \boldsymbol{\mu}(\boldsymbol{x})}{\sigma(\boldsymbol{x})} \odot \boldsymbol{\gamma} + \boldsymbol{\beta}, \quad \boldsymbol{x} \in \mathbb{R}^{d}$$

• $\mu(\mathbf{x}) = \frac{1}{d} \sum_{i=1}^{d} x_i$ is the **mean** of \mathbf{x} .

• $\sigma(\mathbf{x}) = \sqrt{\frac{1}{d} \sum_{i=1}^{d} (x_i - \mu(\mathbf{x}))^2}$ is the standard deviation of \mathbf{x} .

- $oldsymbol{\gamma},oldsymbol{eta}\in\mathbb{R}^d$ are learned scale and shift parameters.
- Helps maintain stable activations across tokens and layers.

Application within a Block

Nadi Tomeh

• Each Transformer sub-layer (Multi-Head Attention or FFN) is wrapped with:

 $\boldsymbol{X} \leftarrow \operatorname{LayerNorm}(\boldsymbol{X} + \operatorname{subLayer}(\boldsymbol{X})).$

- Residual connections allow deeper networks by letting gradients bypass sub-layers if needed.
- LayerNorm ensures each token's feature dimension remains stable in mean and variance.

enerative Models for NLP	7/2/25

Position-Wise Feed-Forward Network (FFN)

Position-Wise MLP

Definition: For each token embedding $\mathbf{x} \in \mathbb{R}^d$, we apply a 2-layer feed-forward transformation:

$$FFN(\boldsymbol{x}) = \max(0, \boldsymbol{x} \boldsymbol{W}_1 + \boldsymbol{b}_1) \boldsymbol{W}_2 + \boldsymbol{b}_2,$$

where:

- $\boldsymbol{W}_1 \in \mathbb{R}^{d \times d_{\mathrm{ff}}}, \quad \boldsymbol{W}_2 \in \mathbb{R}^{d_{\mathrm{ff}} \times d}.$
- $oldsymbol{b}_1\in\mathbb{R}^{d_{\mathrm{ff}}}, oldsymbol{b}_2\in\mathbb{R}^{d}.$
- Typically $d_{\rm ff} > d$; e.g. $d_{\rm ff} = 2048$ and d = 512, called **bottleneck** \rightarrow **expansion** \rightarrow **projection**" structure.

Shape & Per-Token Independence

- Input to FFN layer: $\boldsymbol{H} \in \mathbb{R}^{n \times d}$, where *n* is the number of tokens.
- We apply FFN row by row, i.e. each $h_i \in \mathbb{R}^d$ (the *i*-th token's vector) is mapped to another $h'_i \in \mathbb{R}^d$.
- $\max(0,\cdot)$ is the ReLU nonlinearity.
- This is called **position-wise** because each token's position is processed *independently*, ignoring any cross-token interaction in this sub-layer.

Notes

イロン 不可 アイボン イボン ほうろくの

30 / 46

7/2/25

29 / 46

Notes

Layer Composition in a Decoder Block

Let the input to the first layer be

$$\boldsymbol{X}^{(0)} = \boldsymbol{X} + \operatorname{PE} \in \mathbb{R}^{n \times d},$$

where $\pmb{X} \in \mathbb{R}^{n \times d}$ are token embeddings and $\mathrm{PE} \in \mathbb{R}^{n \times d}$ are positional encodings.

• Each decoder layer I (for I = 1, ..., L) is a composition of sublayers:

$$\boldsymbol{X}^{(l)} = \operatorname{LayerNorm} \left(\boldsymbol{X}^{(l-1)} + \operatorname{FFN} \left(\operatorname{LayerNorm} \left(\boldsymbol{X}^{(l-1)} + \operatorname{MaskedMHA} \left(\boldsymbol{X}^{(l-1)} \right) \right) \right) \right)$$

 Nadi Tomeh
 Generative Models for NLP
 7/2/25
 31/46

Putting It All Together: Composing Transformer Sublayers for LM II

Output Projection to Vocabulary Distribution

• After L layers, we obtain final representations:

 $\boldsymbol{Y} = \boldsymbol{X}^{(L)} \in \mathbb{R}^{n \times d}.$

• For each token (row) $\mathbf{y}_i \in \mathbb{R}^d$ in \mathbf{Y} , compute logits:

$$\boldsymbol{z}_i = \boldsymbol{y}_i \, \boldsymbol{W}_{\mathrm{out}} + \boldsymbol{b}_{\mathrm{out}}, \quad \boldsymbol{W}_{\mathrm{out}} \in \mathbb{R}^{d \times |\mathcal{V}|}, \quad \boldsymbol{b}_{\mathrm{out}} \in \mathbb{R}^{|\mathcal{V}|}$$

• Apply softmax to obtain the next-token probability distribution:

$$p_{\theta}(w_i \mid w_1, \ldots, w_{i-1}) = \boldsymbol{p}_i = \operatorname{softmax}(\boldsymbol{z}_i) \in \mathbb{R}^{|\mathcal{V}|}$$

Generative Models for NLP

Nadi Tomeh

Outline

- Recap and Motivation
- Expanding RNN Memory Beyond a Single Hidden State
- Attention Mechanisms
- Transformer Architecture for Language Modeling
- Training Transformer Models
- Pretraining and Fine-Tuning Transformers
- Transformer Setup Variants: GPT, Full Transformer, and BERT

		・ロト ・白・ ・ヨ・ ・ヨ・	E nac
Nadi Tomeh	Generative Models for NLP	7/2/25	33 / 46

Training Transformers: Essential Points and Equations I

Training Objective

For language modeling, minimize cross-entropy loss:

$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p_{\boldsymbol{\theta}} \Big(w_{i+1} \mid w_1, \dots, w_i \Big)$$

where $p_{\theta}(w_{i+1} \mid w_1, \dots, w_i)$ is computed via a softmax over logits.

Optimizer and Learning Rate Schedule

- **Optimizer:** Adam/AdamW is used for adaptive moment estimation.
- Learning Rate: A warmup phase followed by inverse square-root decay:

$$\eta_t = d_{\text{model}}^{-0.5} \cdot \min\left(t^{-0.5}, t \tau^{-1.5}\right),$$

where au is the warmup period (steps) and $d_{
m model}$ is the model dimension.

Nadi Tomeh

Generative Models for NLP

Notes

Notes

34 / 46

7/2/25

Dropout

• For an activation vector
$$\boldsymbol{z} \in \mathbb{R}^d$$
, dropout applies a mask $\boldsymbol{m} \in \{0,1\}^d$ with

 $m_i \sim \text{Bernoulli}(p)$,

and outputs

$$\tilde{z} = \frac{z \odot m}{p}.$$

Applied in attention, FFN, and residual connections to reduce overfitting.

		<ロ> <四> <目> <目>	E
Nadi Tomeh	Generative Models for NLP	7/2/25	35 / 46

Training Transformers: Essential Points and Equations III

Label Smoothing

Instead of a one-hot target, assign a smoothed target distribution:

$$q(k) = \begin{cases} 1 - \epsilon, & \text{if } k = k^* \\ \frac{\epsilon}{|\mathcal{V}| - 1}, & \text{if } k \neq k^* \end{cases}$$

where k^* is the correct token, $|\mathcal{V}|$ is the vocabulary size, and ϵ is a small constant (e.g., 0.1).

Helps prevent overconfidence and improves generalization.

Gradient Clipping

• To stabilize training, clip gradients:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} \leftarrow \nabla_{\boldsymbol{\theta}} \mathcal{L} \cdot \min\left(1, \frac{c}{\|\nabla_{\boldsymbol{\theta}} \mathcal{L}\|}\right)$$

where c is the clipping threshold.

Notes

Nadi Tomeh

Generative Models for NLP

Why Transformers Train Efficiently on GPUs

Notes

Notes

Parallelizable Operations

- Matrix Multiplications: All sublayers (multi-head self-attention, feed-forward networks) involve large matrix multiplications that are highly optimized on GPUs.
- **Teacher Forcing in Training:** When training with teacher forcing, the target sequence is known. \Rightarrow Losses for all positions are computed simultaneously by arranging tokens in tensors.
- No Recurrence: Unlike RNNs, Transformers do not require sequential updates over time steps. This allows all token positions to be processed in parallel.

Illustration: Parallel Loss Computation

- Suppose we have a batch of B sequences, each of length n. All token embeddings are stored in a tensor $\boldsymbol{X} \in \mathbb{R}^{B \times n \times d}$
- The Transformer computes outputs $\mathbf{Y} \in \mathbb{R}^{B \times n \times d}$ in parallel for every position.
- The predicted logits $\boldsymbol{Z} \in \mathbb{R}^{B \times n \times |\mathcal{V}|}$ are computed via:

$$\boldsymbol{Z} = \boldsymbol{Y} \boldsymbol{W}_{\text{out}} + \boldsymbol{b}_{\text{out}},$$

and the cross-entropy loss is computed over all positions simultaneously.

Nadi Tomeh

Generative Models for NLP

Computational Complexity: Transformer vs. RNN I

Transformer Training Complexity

- Parallel Processing:
 - The entire input sequence of *n* tokens (batch size *B*) is processed simultaneously. Token embeddings are arranged in a tensor: $\mathbf{X} \in \mathbb{R}^{B \times n \times d}$.
- Self-Attention Computations:

$$\mathcal{O}(B \cdot n^2 \cdot d_k),$$

where $\boldsymbol{Q}, \boldsymbol{K} \in \mathbb{R}^{B \times n \times d_k}$.

- Additional matrix multiplications (e.g., with V) also scale similarly.
- **Overall Training:**
 - Although self-attention has a quadratic dependency in n, modern GPUs/TPUs perform these large matrix multiplications in parallel.
 - Backpropagation is applied concurrently over all tokens, making training efficient even for long sequences.

Generative Models for NLP

イロト (日本) (日本) (日本) (日本) (日本) 38 / 46 7/2/25

37 / 46

7/2/25

Nadi Tomeh

For each layer, self-attention requires computing the matrix product $Q K^{\top}$ with cost:

Computational Complexity: Transformer vs. RNN II

RNN Training Complexity

Sequential Processing:

- An RNN processes tokens one by one, unrolling over *n* time steps.
- The input is processed as a sequence: $\{x_1, x_2, \dots, x_n\}$ with recurrence.
- Per-Step Cost:
 - Each time step involves computing:

 $\boldsymbol{h}_t = f_{\boldsymbol{\theta}}(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t),$

with cost $\mathcal{O}(f(d))$ per step.

- Overall Training:
 - Total cost per sequence: $\mathcal{O}(n \cdot f(d))$.
 - Gradients are propagated sequentially via BPTT, limiting parallelization.

Transformer Inference Complexity

- Autoregressive Generation: Inference is inherently sequential as each token depends on previously generated tokens: this requires $O(t^2)$ operations (for a sequence of length t).
- Caching Mechanism: Previously computed key and value matrices are cached to avoid redundant computations.

Generative Models for NLP

Nadi Tomeh

Generative Models for NLP 7/2/25

・ロト・日本・モト・モト・ ヨー のへぐ

39 / 46

Notes

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nadi Tomeh

Pretraining and Fine-Tuning: Technical Setup I

Notes

Pretraining Stage (Unsupervised)

- Objective: Learn general language representations from large-scale, unlabeled corpora.
- Common Pretraining Objectives:
 - Causal Language Modeling (e.g., GPT-style):

$$\mathcal{L}_{\mathsf{LM}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p_{\boldsymbol{\theta}} \Big(w_{i+1} \mid w_1, \dots, w_i \Big),$$

where $p_{\theta}(w_{i+1} | w_1, \dots, w_i)$ is computed via softmax over vocabulary logits. - Masked Language Modeling (e.g., BERT-style):

$$\mathcal{L}_{\mathsf{MLM}}(\boldsymbol{\theta}) = -\sum_{i \in \mathcal{M}} \log p_{\boldsymbol{\theta}}\left(w_i \mid \widetilde{w}\right)$$

where ${\cal M}$ is the set of masked token positions and \widetilde{w} denotes the input sequence with masks applied.

- Input: A large corpus of text.
- Architecture: A Transformer (decoder-only for GPT, encoder-only for BERT, or full encoder-decoder for models like T5) with parameters θ shared across all layers.

		· · · · · · · · · · · · · · · · · · ·	≣ *) α (*
Nadi Tomeh	Generative Models for NLP	7/2/25	41 / 46

Pretraining and Fine-Tuning: Technical Setup II

Fine-Tuning Stage (Supervised)

- **Objective:** Adapt the pretrained Transformer to a downstream task (e.g., text classification, translation, question answering) using a labeled dataset.
- Task-Specific Head:
 - For classification, add a linear layer with parameters $\boldsymbol{W}_{cls} \in \mathbb{R}^{d \times C}$ and bias $\boldsymbol{b}_{cls} \in \mathbb{R}^{C}$, where C is the number of classes.

$$\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{y} \, \boldsymbol{W}_{\mathsf{cls}} + \boldsymbol{b}_{\mathsf{cls}}),$$

- with y being the final hidden state (often corresponding to a special [CLS] token).
- For translation, the encoder-decoder architecture is used and cross-attention is added; the loss remains cross-entropy on the target sequence.
- Fine-Tuning Loss: Typically, a supervised cross-entropy loss is used:

$$\mathcal{L}_{\mathsf{FT}}(\boldsymbol{ heta}, \boldsymbol{ heta}_{\mathsf{head}}) = -\sum_{i} \log p_{\boldsymbol{ heta}, \boldsymbol{ heta}_{\mathsf{head}}} \Big(y_i \, \big| \, x_i \Big)$$

where x_i is the input and y_i is the target label.

- Parameters θ are initialized from the pretrained model.
- The task-specific head parameters θ_{head} are initialized randomly.

Nadi Tomeh

Generative Models for NLP

Notes

42 / 46

7/2/25

Outline

- Recap and Motivation
- Expanding RNN Memory Beyond a Single Hidden State
- Attention Mechanisms
- Transformer Architecture for Language Modeling
- Training Transformer Models
- Pretraining and Fine-Tuning Transformers
- Transformer Setup Variants: GPT, Full Transformer, and BERT

		(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	€ 9Q@
Nadi Tomeh	Generative Models for NLP	7/2/25	43 / 46

Three Transformer Setups I

Decoder-Only Transformers: GPT Family

- Architecture:
 - Uses a *decoder-only* Transformer with masked self-attention.
 - Input: a sequence of token embeddings $X \in \mathbb{R}^{n \times d}$ (with positional encodings added).
 - Mask: Enforces causal (left-to-right) attention:

$$\mathsf{Attention}(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = \mathrm{softmax} \Big(\frac{\boldsymbol{Q} \, \boldsymbol{K}^\top + \boldsymbol{M}}{\sqrt{d_k}} \Big) \, \boldsymbol{V},$$

where
$$\boldsymbol{M}[i,j] = 0$$
 for $j \leq i$ and $-\infty$ for $j > i$

• Objective: Autoregressive language modeling.

$$\mathcal{L}_{LM}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p_{\boldsymbol{\theta}} \Big(w_{i+1} \mid w_1, \dots, w_i \Big)$$

Generative Models for NLP

Key Points:

Nadi Tomeh

- All computations are parallelizable over sequence positions, except for the causal masking.
- Suitable for large-scale pretraining and text generation.

Notes

Three Transformer Setups II

Notes

Notes

Full Transformer (Encoder–Decoder)

- Architecture:
 - Consists of an **Encoder** and a **Decoder**.

 - **Encoder:** Processes source sequence $\mathbf{X}^{src} \in \mathbb{R}^{n \times d}$ with self-attention (unmasked). **Decoder:** Processes target sequence $\mathbf{X}^{trg} \in \mathbb{R}^{m \times d}$ with *masked* self-attention, and attends to encoder outputs via cross-attention.
 - Encoder and decoder stacks are each built from residual-connected layers of multi-head self-attention and FFN.
- **Objective:** Sequence-to-sequence learning (e.g., for translation):

$$\mathcal{L}_{\mathsf{seq2seq}}(\boldsymbol{\theta}) = -\sum_{i=1}^{m} \log p_{\boldsymbol{\theta}} \Big(w_i^{\mathrm{trg}} \mid w_1^{\mathrm{trg}}, \dots, w_{i-1}^{\mathrm{trg}}, \boldsymbol{H}^{\mathsf{enc}} \Big).$$

where \boldsymbol{H}^{enc} are the encoder outputs.

- Enables contextualized encoding of the source and dynamic alignment during decoding.
- Widely used for tasks like machine translation and summarization.

		< □ > < 部 > < 분 > < 분 >	≣ ৩৭৫
Nadi Tomeh	Generative Models for NLP	7/2/25	45 / 46

Three Transformer Setups III

Encoder-Only Transformers: BERT

- Architecture:
 - Uses only the encoder part of the Transformer.
 - Processes a full input sequence $X \in \mathbb{R}^{n \times d}$ with self-attention (unmasked).
 - Positional encodings are added to maintain token order.
- Pretraining Objectives:
 - Masked Language Modeling (MLM): Randomly mask some tokens and predict them.

$$\mathcal{L}_{\mathsf{MLM}}(\boldsymbol{\theta}) = -\sum_{i \in \mathcal{M}} \log p_{\boldsymbol{\theta}} \Big(w_i \mid \widetilde{w} \Big),$$

where \mathcal{M} is the set of masked token indices.

Fine-Tuning: Adapt the pretrained encoder for downstream tasks (e.g., classification, question answering) by adding a task-specific head.

46 / 46 7/2/25