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Recap

So far we have seeen:
1. How word (token) vectors are the basis of text representation;

2. How Language Models can generate texts fluently

3. How Transformers have become the ubiquitous neural architectures for LMs

4. How to align the generated texts with instructions

Today
All these models assume that we generate sentences one token at a time uni-directionally

What if we could generate all tokens simultaneously?

Several models have appeared recently, all based on diffusion processes (1) (3)
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Diffusion Models

A mecha robot playing the guitar in a forest, low quality, 3d, photorealistic

Diffusion Models are known to be good at generating realistic images.
Can we use them to output realistic responses?

• Several propositions recently. We focus on the first one in this talk (2).
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Diffusion Models (2)

Two reciprocal processes: forward and backward
• diffusion distribution q (forward) generates noise from data

• generation outputs data by denoising via distribution p (backward) from noise to real data.

• q is fixed, we want to learn p

For discrete distributions
This paper discusses how to model diffusion for multinomial distributions (MD)
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Definition

We want to generate data from a target multinomial distribution of K classes (ie we have a vocabulary of
size K)

Data
We denote:

• x0, a piece of data generated by the target MD;

• xt , a piece of data generated by a noisy version of target MD after t forward steps.

x0, x1, . . . , xt , . . . , xT are all one-hot vectors of length K .

• we will note δk the one-hot vector with 1 at position k.

Define a diffusion model
We need 2 conditional probabilities:

• forward q(xt |xt−1) adding more noise

• backward p(xt |xt+1) substracting noise

p, q must be synchronized for every timestep t.
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Forward diffusion process

q(xt |xt−1)

• many possibilities, must be easy to sample from;

• For instance, in (2):

1. flip a (biased) coin;
2. if head then do not change xt−1, else (tail), choose a category at random (uniformly)

This amounts to:

q(xt |xt−1 = δk) =

{
(1− βt) +

βt
K if xt = δk

βt
K otherwise.

where βt is a hyper-parameter corresponding to the head / tail ratio

But we will need more
1. q(xt |x0) but be easily computable (apply t forward steps in a row)

2. the posterior q(xt−1|xt , x0) must also be easy to compute

We will see why in a moment
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Combining steps of forward process (1)

Combine 2 steps
t − 1 → t → t + 1

q(xt+1|xt−1 = δk) =
∑

xt

q(xt |xt−1 = δk)q(xt+1|xt , xt−1 = δk)

=
∑

xt

q(xt |xt−1 = δk)q(xt+1|xt)

= q(xt = δk |xt−1 = δk)q(xt+1|xt = δk) +
∑

xt 6=δk

q(xt |xt−1 = δk)q(xt+1|xt)

=

{
((1− βt) +

βt
K )((1− βt+1) +

βt+1

K ) + (K − 1)βt
K

βt+1

K if xt+1 = δk
1−above

K−1
otherwise

=


(1− βt)(1− βt+1) +

1− (1− βt)(1− βt+1)

K if xt+1 = δk

1− (1− βt)(1− βt+1)

K otherwise.
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Combining steps of forward process (2)

Combinining t steps from the beginning
• Apply the same process as before n times

• we have a recurrence:

q(xt |x0 = δk) =

{
ᾱt +

1−ᾱt
K ifxt = δk

1−ᾱt
K otherwise.

with αt =
∏t

i=0(1− βi) and ᾱt = 1− αt
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Computing the posterior (1)

The posterior will be needed in the loss function

Derivation of posterior

q(xt−1|xt , x0) =
q(xt−1, xt |x0)

q(xt |x0)

=
q(xt |xt−1, x0)q(xt−1|x0)

q(xt |x0)

=
q(xt |xt−1)q(xt−1|x0)

q(xt |x0)
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Computing the posterior (2)

The posterior will be needed in the loss function

Derivation of posterior
Let us rewrite the previous derivation with concrete data values:

q(xt−1 = δp|xt = δc , x0 = δk) =
q(xt = δc |xt−1 = δp)q(xt−1 = δp|x0 = δk)

q(xt = δc |x0 = δk)

=
q(xt = δc |xt−1 = δp)q(xt−1 = δp|x0 = δk)∑

δp′
q(xt = δc , xt−1 = δp′ |x0 = δk)

=
q(xt = δc |xt−1 = δp)q(xt−1 = δp|x0 = δk)∑

δp′
q(xt = δc |xt−1 = δp′)q(xt−1 = δp′ |x0 = δk)

=
θ(t, k, c, p)∑K

p′=1 θ(t, k, c, p′)

Take home message: we can precompute all posteriors and store them in tables.
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Backward Process p(xt−1|xt) as Denoising

The distribution that we want to learn and implement via a neural network
• Actually, T different distributions, too difficult: so rewrite backward process and model only part of it

Denoising with posterior from step t to step t − 1:
1. Complete denoising: predict clean from noisy (ie perform t backward steps)

2. From predicted data use the posterior to perform (t − 1) forward steps.

pθ(xt−1|xt) =
∑
x0

pθ(xt−1, x0|xt)

=
∑
x0

pθ(x0|xt)q(xt−1|x0, xt)

= Ex0∼pθ(x0|xt )
[
q(xt−1|x0, xt)

]
≈ q(xt−1|Ex0∼pθ(x0|xt )[x0], xt)

= q(xt−1|x̂0, xt) with x̂0 = µθ(xt , t) the neural network.

Remarks
1. x̂0 is ≥ 0, sums to 1, but not one-hot.

2. p(x0|x1) = q(x0|x̂0, x1) is simply x̂0 = µ(x1, 1) seen as a distribution.

We now have all the tools to learn our diffusion model
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Learning Problem (1)

Maximize the log-likelihood with latent diffusion

log p(x0) = log
∑

x1,...,xT

p(x0, x1, . . . , xT ) = log
∑

x1,...,xT

q(x1, . . . , xT |x0)

q(x1, . . . , xT |x0)
p(x0, x1, . . . , xT )

= logEx1,...,xT ∼q[
p(x0, x1, . . . , xT )

q(x1, . . . , xT |x0)
]

≥ Ex1,...,xT ∼q[log p(x0, x1, . . . , xT )

q(x1, . . . , xT |x0)
]

= Ex1,...,xT ∼q[log p(xT )p(x0, x1, . . . |xT )

q(x1, . . . , xT |x0)
]

= Ex1,...,xT ∼q[log
p(xT )

∏T
t=1 p(xt−1|xt)∏T

t=1 q(xt |xt−1)
]

= Ex1,...,xT ∼q[log p(xT ) +

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
]

• Maximize last line, a lower bound of the log-likelihood, as a surrogate loss.

• . . . but because of sampling, this has high variance, we need more maths!Joseph Le Roux Generative Models for NLP January 9, 2026 17 / 27
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Learning Problem (2)

Forget constant terms

Eq[log p(xT ) +

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
] = Eq[log p(xT )] + Eq[

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
] = C + Eq[

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
]

Use the special definition of p(x0|x1)

Eq[

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
] = Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] + Eq[log p(x0|x1)

q(x1|x0)
]

= Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] + Eq[log µ(x1, 1)

q(x1|x0)
]

= Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] + Eq[logµ(x1, 1)]− C
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Learning Problem (3)

Use the posterior

Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] = Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)

q(xt−1|x0)

q(xt |x0)
]

= Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)
] + Eq[

q(xt−1|x0)

q(xt |x0)
] = Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)
] + C

Use Kullback-Liebler divergence

Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)
] =

T∑
t=2

Eq[log p(xt−1|xt)

q(xt−1|xt , x0)
]

=

T∑
t=2

Eq[−KL
(
q(xt−1|xt , x0)||p(xt−1|xt)

)
]

=

T∑
t=2

Eq[−KL
(
q(xt−1|xt , x0)||q(xt−1|xt , x̂0)

)
]
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Learning Problem (4)

Congratulations! You (and I) survived
We have our loss function defined as:

L(x0) = Eqlog p(x0|x1) +

T∑
t=2

Eq[−KL
(
q(xt−1|xt , x0)||q(xt−1|xt , x̂0)

)
]

In practice, do not optimize for every timestep:

• sample 1 ≤ t ≤ T at random

• diffuse x0 for t timesteps (or better, sample from q(xt |x0) directly)

• optimize KL for timestep t only

• move to the next example
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Experiments on Language

Datasets
• text8: data has First billion characters from wikipedia (clean data), can be used in word2vec, glove etc

– 27 categories (26 letters + space)
– chunked in sequences of length 256
– train/dev/test sizes: 90000000/5000000/5000000

• enwik8: first 100,000,000 (100M) bytes of the English Wikipedia XML dump on Mar. 3, 2006 and is
typically used to measure a model’s ability to compress data

– 256 categories (bytes)
– chunked in sequences of length 320
– train/dev/test sizes: 90000000/5000000/5000000

Architecture
• 12 layer transformer (encoders only), 8 heads, layer size is 512

• 1000 diffusion steps for text8

• 4000 diffusion steps for enwik8
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Results (1)

Compression metrics

• worse than autoregressive models

• better than non-AR with continuous embeddings
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Results (2)

Sampling
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Results (3)

Spell Checking
as a by-product, assume that input text is x1 and predict x0
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