
Generative Models for NLP
Denoising Diffusion and Language Models

Joseph Le Roux

January 9, 2026

Joseph Le Roux Generative Models for NLP January 9, 2026 1 / 27

Outline

• Introduction

• Diffusion

• Model

• Learning Diffusion Models

• Applications

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 2 / 27

Notes

Notes

DATE: 30/12/25

Joseph Le Roux Generative Models for NLP January 9, 2026 4 / 27

Recap

So far we have seeen:
1. How word (token) vectors are the basis of text representation;

2. How Language Models can generate texts fluently

3. How Transformers have become the ubiquitous neural architectures for LMs

4. How to align the generated texts with instructions

Today
All these models assume that we generate sentences one token at a time uni-directionally

What if we could generate all tokens simultaneously?

Several models have appeared recently, all based on diffusion processes (1) (3)

Joseph Le Roux Generative Models for NLP January 9, 2026 4 / 27

Notes

Notes

Diffusion Models

A mecha robot playing the guitar in a forest, low quality, 3d, photorealistic

Diffusion Models are known to be good at generating realistic images.
Can we use them to output realistic responses?

• Several propositions recently. We focus on the first one in this talk (2).

Joseph Le Roux Generative Models for NLP January 9, 2026 6 / 27

Diffusion Models (2)

Two reciprocal processes: forward and backward
• diffusion distribution q (forward) generates noise from data

• generation outputs data by denoising via distribution p (backward) from noise to real data.

• q is fixed, we want to learn p

For discrete distributions
This paper discusses how to model diffusion for multinomial distributions (MD)

Joseph Le Roux Generative Models for NLP January 9, 2026 7 / 27

Notes

Notes

Definition

We want to generate data from a target multinomial distribution of K classes (ie we have a vocabulary of
size K)

Data
We denote:

• x0, a piece of data generated by the target MD;

• xt , a piece of data generated by a noisy version of target MD after t forward steps.

x0, x1, . . . , xt , . . . , xT are all one-hot vectors of length K .

• we will note δk the one-hot vector with 1 at position k.

Define a diffusion model
We need 2 conditional probabilities:

• forward q(xt |xt−1) adding more noise

• backward p(xt |xt+1) substracting noise

p, q must be synchronized for every timestep t.
Joseph Le Roux Generative Models for NLP January 9, 2026 9 / 27

Forward diffusion process

q(xt |xt−1)

• many possibilities, must be easy to sample from;

• For instance, in (2):

1. flip a (biased) coin;
2. if head then do not change xt−1, else (tail), choose a category at random (uniformly)

This amounts to:

q(xt |xt−1 = δk) =

{
(1− βt) +

βt
K if xt = δk

βt
K otherwise.

where βt is a hyper-parameter corresponding to the head / tail ratio

But we will need more
1. q(xt |x0) but be easily computable (apply t forward steps in a row)

2. the posterior q(xt−1|xt , x0) must also be easy to compute

We will see why in a moment
Joseph Le Roux Generative Models for NLP January 9, 2026 10 / 27

Notes

Notes

Combining steps of forward process (1)

Combine 2 steps
t − 1 → t → t + 1

q(xt+1|xt−1 = δk) =
∑

xt

q(xt |xt−1 = δk)q(xt+1|xt , xt−1 = δk)

=
∑

xt

q(xt |xt−1 = δk)q(xt+1|xt)

= q(xt = δk |xt−1 = δk)q(xt+1|xt = δk) +
∑

xt 6=δk

q(xt |xt−1 = δk)q(xt+1|xt)

=

{
((1− βt) +

βt
K)((1− βt+1) +

βt+1

K) + (K − 1)βt
K

βt+1

K if xt+1 = δk
1−above

K−1
otherwise

=


(1− βt)(1− βt+1) +

1− (1− βt)(1− βt+1)

K if xt+1 = δk

1− (1− βt)(1− βt+1)

K otherwise.

Joseph Le Roux Generative Models for NLP January 9, 2026 11 / 27

Combining steps of forward process (2)

Combinining t steps from the beginning
• Apply the same process as before n times

• we have a recurrence:

q(xt |x0 = δk) =

{
ᾱt +

1−ᾱt
K ifxt = δk

1−ᾱt
K otherwise.

with αt =
∏t

i=0(1− βi) and ᾱt = 1− αt

Joseph Le Roux Generative Models for NLP January 9, 2026 12 / 27

Notes

Notes

Computing the posterior (1)

The posterior will be needed in the loss function

Derivation of posterior

q(xt−1|xt , x0) =
q(xt−1, xt |x0)

q(xt |x0)

=
q(xt |xt−1, x0)q(xt−1|x0)

q(xt |x0)

=
q(xt |xt−1)q(xt−1|x0)

q(xt |x0)

Joseph Le Roux Generative Models for NLP January 9, 2026 13 / 27

Computing the posterior (2)

The posterior will be needed in the loss function

Derivation of posterior
Let us rewrite the previous derivation with concrete data values:

q(xt−1 = δp|xt = δc , x0 = δk) =
q(xt = δc |xt−1 = δp)q(xt−1 = δp|x0 = δk)

q(xt = δc |x0 = δk)

=
q(xt = δc |xt−1 = δp)q(xt−1 = δp|x0 = δk)∑

δp′
q(xt = δc , xt−1 = δp′ |x0 = δk)

=
q(xt = δc |xt−1 = δp)q(xt−1 = δp|x0 = δk)∑

δp′
q(xt = δc |xt−1 = δp′)q(xt−1 = δp′ |x0 = δk)

=
θ(t, k, c, p)∑K

p′=1 θ(t, k, c, p′)

Take home message: we can precompute all posteriors and store them in tables.

Joseph Le Roux Generative Models for NLP January 9, 2026 14 / 27

Notes

Notes

Backward Process p(xt−1|xt) as Denoising

The distribution that we want to learn and implement via a neural network
• Actually, T different distributions, too difficult: so rewrite backward process and model only part of it

Denoising with posterior from step t to step t − 1:
1. Complete denoising: predict clean from noisy (ie perform t backward steps)

2. From predicted data use the posterior to perform (t − 1) forward steps.

pθ(xt−1|xt) =
∑
x0

pθ(xt−1, x0|xt)

=
∑
x0

pθ(x0|xt)q(xt−1|x0, xt)

= Ex0∼pθ(x0|xt)
[
q(xt−1|x0, xt)

]
≈ q(xt−1|Ex0∼pθ(x0|xt)[x0], xt)

= q(xt−1|x̂0, xt) with x̂0 = µθ(xt , t) the neural network.

Remarks
1. x̂0 is ≥ 0, sums to 1, but not one-hot.

2. p(x0|x1) = q(x0|x̂0, x1) is simply x̂0 = µ(x1, 1) seen as a distribution.

We now have all the tools to learn our diffusion model
Joseph Le Roux Generative Models for NLP January 9, 2026 15 / 27

Learning Problem (1)

Maximize the log-likelihood with latent diffusion

log p(x0) = log
∑

x1,...,xT

p(x0, x1, . . . , xT) = log
∑

x1,...,xT

q(x1, . . . , xT |x0)

q(x1, . . . , xT |x0)
p(x0, x1, . . . , xT)

= logEx1,...,xT ∼q[
p(x0, x1, . . . , xT)

q(x1, . . . , xT |x0)
]

≥ Ex1,...,xT ∼q[log p(x0, x1, . . . , xT)

q(x1, . . . , xT |x0)
]

= Ex1,...,xT ∼q[log p(xT)p(x0, x1, . . . |xT)

q(x1, . . . , xT |x0)
]

= Ex1,...,xT ∼q[log
p(xT)

∏T
t=1 p(xt−1|xt)∏T

t=1 q(xt |xt−1)
]

= Ex1,...,xT ∼q[log p(xT) +

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
]

• Maximize last line, a lower bound of the log-likelihood, as a surrogate loss.

• . . . but because of sampling, this has high variance, we need more maths!Joseph Le Roux Generative Models for NLP January 9, 2026 17 / 27

Notes

Notes

Learning Problem (2)

Forget constant terms

Eq[log p(xT) +

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
] = Eq[log p(xT)] + Eq[

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
] = C + Eq[

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
]

Use the special definition of p(x0|x1)

Eq[

T∑
t=1

log p(xt−1|xt)

q(xt |xt−1)
] = Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] + Eq[log p(x0|x1)

q(x1|x0)
]

= Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] + Eq[log µ(x1, 1)

q(x1|x0)
]

= Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] + Eq[logµ(x1, 1)]− C

Joseph Le Roux Generative Models for NLP January 9, 2026 18 / 27

Learning Problem (3)

Use the posterior

Eq[

T∑
t=2

log p(xt−1|xt)

q(xt |xt−1)
] = Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)

q(xt−1|x0)

q(xt |x0)
]

= Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)
] + Eq[

q(xt−1|x0)

q(xt |x0)
] = Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)
] + C

Use Kullback-Liebler divergence

Eq[

T∑
t=2

log p(xt−1|xt)

q(xt−1|xt , x0)
] =

T∑
t=2

Eq[log p(xt−1|xt)

q(xt−1|xt , x0)
]

=

T∑
t=2

Eq[−KL
(
q(xt−1|xt , x0)||p(xt−1|xt)

)
]

=

T∑
t=2

Eq[−KL
(
q(xt−1|xt , x0)||q(xt−1|xt , x̂0)

)
]

Joseph Le Roux Generative Models for NLP January 9, 2026 19 / 27

Notes

Notes

Learning Problem (4)

Congratulations! You (and I) survived
We have our loss function defined as:

L(x0) = Eqlog p(x0|x1) +

T∑
t=2

Eq[−KL
(
q(xt−1|xt , x0)||q(xt−1|xt , x̂0)

)
]

In practice, do not optimize for every timestep:

• sample 1 ≤ t ≤ T at random

• diffuse x0 for t timesteps (or better, sample from q(xt |x0) directly)

• optimize KL for timestep t only

• move to the next example

Joseph Le Roux Generative Models for NLP January 9, 2026 20 / 27

Experiments on Language

Datasets
• text8: data has First billion characters from wikipedia (clean data), can be used in word2vec, glove etc

– 27 categories (26 letters + space)
– chunked in sequences of length 256
– train/dev/test sizes: 90000000/5000000/5000000

• enwik8: first 100,000,000 (100M) bytes of the English Wikipedia XML dump on Mar. 3, 2006 and is
typically used to measure a model’s ability to compress data

– 256 categories (bytes)
– chunked in sequences of length 320
– train/dev/test sizes: 90000000/5000000/5000000

Architecture
• 12 layer transformer (encoders only), 8 heads, layer size is 512

• 1000 diffusion steps for text8

• 4000 diffusion steps for enwik8
Joseph Le Roux Generative Models for NLP January 9, 2026 22 / 27

Notes

Notes

Results (1)

Compression metrics

• worse than autoregressive models

• better than non-AR with continuous embeddings

Joseph Le Roux Generative Models for NLP January 9, 2026 23 / 27

Results (2)

Sampling

Joseph Le Roux Generative Models for NLP January 9, 2026 24 / 27

Notes

Notes

Results (3)

Spell Checking
as a by-product, assume that input text is x1 and predict x0

Joseph Le Roux Generative Models for NLP January 9, 2026 25 / 27

Bibliography

Austin, Jacob and Johnson, Daniel D. and Ho, Jonathan and Tarlow, Daniel and van den Berg, Rianne (2021).
Structured Denoising Diffusion Models in Discrete State-Spaces, Curran Associates, Inc..
Hoogeboom, Emiel and Nielsen, Didrik and Jaini, Priyank and Forré, Patrick and Welling, Max (2021). Argmax
Flows and Multinomial Diffusion: Learning Categorical Distributions, Curran Associates, Inc..
Lou, Aaron and Meng, Chenlin and Ermon, Stefano (2024). Discrete Diffusion Modeling by Estimating the
Ratios of the Data Distribution, PMLR.

Joseph Le Roux Generative Models for NLP January 9, 2026 27 / 27

Notes

Notes

	Introduction
	Diffusion
	Model
	Learning Diffusion Models
	Applications
	Conclusion

