Generative Models for NLP

Reinforcement Learning for Human Feedback

Joseph Le Roux

January 9, 2026

Joseph Le Roux Generative Models for NLP January 9, 2026

Outline

= Introduction

= Reinforcement Learning (from Human Feedback) for Generation

= Learning a Reward Function

= Online Policy Learning for Generation

= Offline Policy: DPO

= Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026

1/36

2/36

Notes

Notes

DATE: 30/12/25
#-+ENDsgrc

Joseph Le Roux Generative Models for NLP January 9, 2026

Recap

So far we have seeen:

1. How word (token) vectors are the basis of text representation;
2. How Language Models can generate texts fluently

3. How Transformers have become the ubiquitous neural architectures for LMs

4/36

Today

How we can further train a LM to generate
not only fluent texts
but also useful texts given a task or a context

Using techniques from Reinforcement learning (1) (4)

Notes

Joseph Le Roux Generative Models for NLP January 9, 2026

4/36

Notes

LMs for interactions Notes
We can use LMs to reply to a request by generating from a prompt (see previous lab session)

A probabilistic model for question answering

Given a prompt x (question, instruction...) we can generate a reply y by sampling the

conditional distribution:

p X7y
plyx) = P&V
p(x)
where x, y is the sequence of x concatenated with y (usually with separator token <SEP> in
between)
v
With LMs

So in practice we want to learn to predict sequences x <SEP> y where:

x is fixed and is a typical question, and y is the correct answer

We can use a LM for that, trained with cross-entropy per word as before

Issues

We do not have the correct answers y* for all questions

More imporantly, are all replies different from y* equally bad?

. ' n '
Joseph Le Roux Generative Models for NLP January 9, 2026 5/36

A Typical Architecture for LM Post-training (1) Notes
Goal: Align output with user’s expectation

1/ Supervised Fine-Tuning

Next-word prediction on a corpus of texts similar to target texts;

Usually from human-generated responses (eg Text + summary created by humans)

Model called 7gpT

2/ Collect Preference pairs and train an Reward Model

With SFT (or another model) generate responses y; ... yn for prompt x

For each pair of responses,

1. ask a (human) labeler their preference;

2. create a corpus of triplets (x, yc, yr).

Train a model Ry to attribute a score to responses to reflect preferences

3/ Train a Policy based on the Reward Model

initialized as wspT

use Reinforcement Learning or Direct Policy Optimization

.
Joseph Le Roux Generative Models for NLP January 9, 2026 6/36

A Typical Architecture for LM Post-training (2)

Example: Learn to generate summaries (2)

© Collect human feedback © Train reward model

A Reddit post is One post with

sampled from two summaries
the Reddit judged by a
TL:DR dataset. human are fed
to the reward
— ol =

l

Various policies The reward
are used to model
sample a set of calculates a
summaries. reward r for
each summary.
e

a

Two summaries

are selected for
evaluation. i i

A human judges
which is a better
summary of the
post.

on the rewards
and is used to

update the
1 reward model. T

“j is better than k™ “jis better than k”

d human label, - -
and human label loss = [09(0(’/ r)

«—

The loss is | l
calculated based

& — (il

ol ~

© Train policy with PPO

Anew post is
sampled from the
dataset.

The policy 1t
generates a
summary for the
post.

The reward
model calculates
a reward for the
summary.

The reward is M
used to update

the policy via

PPO. ir

Notes

Joseph Le Roux Generative Models for NLP

Why we need more than just cross-entropy ?

Pros of Cross-entropy Loss

supervised, self-supervised
easy to implement
generates fluent texts (no grammatical errors)

trained to generate one correct solution

January 9, 2026 7/36

Cons of Cross-Entropy Loss

works at the word level, not at the text level
not possible to grade answers

not possible to add soft preferences

Notes

Joseph Le Roux Generative Models for NLP

January 9, 2026 9/36

Why Reinforcement Learning (Limits of cross-entropy)

RLHF is one component of post-training.

Post-training is a more complete set of techniques and best-practices to make language models
more useful for downstream tasks

RL

works at the level of sequences
grades different replies via a reward function

explore the search space enough to improve the current model

Notes

Notes

v
Challenges of RL for text generation
we do not know the reward function
we do not want to lose fluency
v
Joseph Le Roux Generative Models for NLP January 9, 2026 10/36
Reinforcement Learning
Agent-Environnement Model
At each time t:
the agent witnesses the environment
... which is in state s;.
state| |reward action R
s, | |& N The agent performs an action $a:$. ..
_ ... which transforms the environment
’ to state sy41 and gives reward ry41,
and so on. ..
v
Definitions
1. The agent will generate trajectories from initial state sp:
S0, 30, 0,51,a1, 12,52, ... rT—15T
2. The function in charge of choosing actions is called the policy 7
V.
For LMs
s; corresponds to the position i in the reply y
Joseph Le Roux Generative Models for NLP January 9, 2026 11/36

dj Ccorresponas Lo cnosing Lo outiput tne wora ror position 71 1n repty y

Reinforcement Learning (1)

We want to generate trajectories that earn rewards

from sp (initial state, prompt)
choose actions (choose words for the reply) from policy mg

so that the sum of all rewards is maximum

A probabilistic variant: stochastic policy

do not choose actions, but rather sample
we need to parametrize a distribution 7y over actions

to maximize the expected sum of rewards

RL Objective for each example

T-1
mélx J(e) =]ETNﬂ'e [G(T)] = E"'Nﬂ'9 [Z rt]
t=0

Notes

s corresponds to the prompt for the current example, r; is the reward received after the tth
action (word)
v
Joseph Le Roux Generative Models for NLP January 9, 2026 12/36

Reinforcement Learning (2)

Probability of a trajectory = Probability of a LM

In our case, the only source of stochasticity is the sampling of each word with policy 7y

p(so,a0,r1,...,s7,r7) = p(s0) % p(ao, ro, ..., rr—1,57|s0) = p(ao, ro, ..., rr—1,stlso)
= p(aolso) x p(ro,---,rr—1,57|50, a0)
= mp(aolso) X p(ro,---,rr—1,57/%0, a0)
= mg(aolso) x p(ro|so,ao) X p(si,...,rr—1,s7|s0, ao, ro)
= mg(aolso) X p(so,---,rr—1,57|%0,a0)
= mg(aolso) % p(so|so, a0) x p(a1, ..., rr—1,s7|s0, a0, 1)
= mg(aolso) x p(a1,...,rr—1,s7ls0,a0,51)
= mg(aolso) x p(at,...,rr—1,sr|s1)
T-1
= H mg(atlst)
t=0

In our case, the probability of a trajectory is the probability [mg(yi|ly<i) = p(y): a LM Il

Notes

Joseph Le Roux Generative Models for NLP January 9, 2026 13/36

Reinforcement Learning (3)

Learn with neural network to parameterize my by gradient descent.
VJ(0) = VErnr[G(7)] where G(r) => rinT
t
=V p(r)G(r) (def. expectation)
- ZTVP(T)G(T) (gradient <> sum)
- XT: G(r)Vp(r) (gain is constant)
=y MG(r)vp(r) (multiply by one)

— p(7)

= T T VP(T) rearrange
=3 p6(7T (rearrange)

= Z p(T)G(T)V1ogp(r) (log trick)

Notes

VJ(0) =Ernrx[G(T)Viogp(T)] (def. expectation)

Joseph Le Roux Generative Models for NLP January 9, 2026 14 /36

Reinforcement Learning (4)

Learn with neural network to parameterize my by gradient descent.

VJI(w) = Ernr[G(T)V log(p(T))]
T—1

=Err[G(1)(Z V log 7(ailsi))]

i=0

— VJ(w) = Log-likelihood gradient multiplied by G !!

REINFORCE algorithm (5)
While True:

Sample 7 (generate a reply) with the current model with parameters 6
Compute G(7)

Sum log-likelihood losses for all actions in 7 multiplied by G(7)

Notes

(can sample multiple 7 and average)

Joseph Le Roux Generative Models for NLP January 9, 2026 15/36

Reinforcement Learning (5)

Variance Reduction

Notes

Notes

Sampling from the model (MC methods) usually exhibits large variance
Use a baseline that compare G(7) with others
v
REINFORCE with Leave-One-Out Baseline (RLOO)
While True:
Sample 71 ... 7K (generate K replies) with the current model with parameters 6
Compute G(71)...G(7K)
Optimize 6 with the gradient of:
1K 1 T—1
k 4 k|ck
?Z(G(T)—ﬁ G(™)) (D logm(aflsf))
k=1 k' £k i=0
v
Joseph Le Roux Generative Models for NLP January 9, 2026 16/36
Types of Preferences
Preference Data Dprer
a collection of triplets (x, yc, yr)
x the prompt (more generally the context);
Yc the preferred (chosen) the response;
Yr the rejected response.
Ye is not the best response, simply a better one than y,
v
Extensions
Optionally, human labelers can add scores or features to responses. We will ignore this in the
following
v

Joseph Le Roux Generative Models for NLP January 9, 2026 18 /36

Learning the Reward Function (1)

Bradley-Terry Model

A BT model of preferences is a model that verifies, for each pair of events i, j:
. p(i)

p(i>j)= —F5—=
p(i) + P()

where i > j means that i is preferred to j

Build a BT model from rewards

Let us define a neural network ry, (LSTM/Transformer...) that given a sequence "x SEP y"

assign a reward score of y as a response to x;

We write this score rg(y);

We can define a probability p(y) = #%
y

We want to maximize that p(rg(yc) > re(yr):

Notes

Joseph Le Roux Generative Models for NLP January 9, 2026 19/36
Learning the Reward Function (2)
Build a BT model from rewards
We want to maximize that p(rg(yc) > re(yr):
p(yc)
p(ro(ye) > ro(yr) = ——~—
p(ye) + p(yr)
exp rg (yc)
_ Z
exp re (yc) exp rg (yr)
4 + 4
_ exp ry (ye)
exp ry(ye) + exp ry(yr)
Joseph Le Roux Generative Models for NLP January 9, 2026 20/36

Notes

Learning the Reward Function (3)

Build a BT model from rewards

We want to maximize that p(rg(yc) > rs(yr): Equivalently, we want to minimize, by gradient
descent:

_ exp rg(ye) - log 1
exp ry (ye) + exp ry(yr) 1+ exp(rg(yr) — re(yc))
1

—log 14 exp(re(yr) — re(ye))
—log 1+ log(1 + exp(ry(yr) — rg(yc)))
= log(1 + exp(rg(yr) — rs(ye)))

~
~
S
=
I

Reward Model training

1. Architecture:
Usually a simple linear level h x 1 from the CLS/EOS token of the SFT Transformer LM

2. Training

Usually just a few epochs (17?)

Joseph Le Roux Generative Models for NLP January 9, 2026 21/36

Policy Learning : Regularization

Issues with the reward model

usually yr and y. are generated by models trained with next-word prediction: very fluent
the reward does not take fluency into account

maximizing the expected reward results in non-fluent models

Use Regularization

we want the final model to be close to SFT, so fluency remains.

use a notion of close adapted for distributions: Kullback-Leibler divergence

Pre(y)
Qsrr(y)

Dki(Prel|Qsrr) = > Pre(y) log()
y

=Eypg, () [log Pri(y) — log Qsrr(y)]

Notes

We can approximate this loss by sampling y from the current model.

Joseph Le Roux Generative Models for NLP January 9, 2026 23/36

Notes

Policy Learning : Reinforce

REINFORCE with reward from the RM with regularization

Maximize for each example

K Tk
1
JO) = 2 >R D logmo(yfIys)
k=1 i=1

where R is the RLOO reward with RM and regularization:

ROM) = rg %) — 2 (X ro(K)) — Anec(Y_(ogmo(Hly&) — logmsr(vF1y£,)
K £k i

Joseph Le Roux Generative Models for NLP January 9, 2026 24 /36

Policy Learning: Proximal Policy Optimization (PPO) (1)

Another way to implement a policy gradient algorithm:

Define how much an action is better than another one on average A(s, a):
state value V7 (s) = E[ZZ:O reykls]
state-action value Q™ (s, a)IE[ZZ—ZO re4kls, al

advantage A™(s,a) = Q™ (s,a) — V™ (s)

Find new policy with better advantage than previous policy

_ 1 m0@ils) pragi s
O =32 ey)

i

Notes

Joseph Le Roux Generative Models for NLP January 9, 2026 25/36

Notes

Policy Learning: Proximal Policy Optimization (PPO) (2)

Issue with PPO: objective very unstable: big changes in 6, difficult to find an optimum

Use a clipped variant (Trust Region Optimization)

1 .. mo(ailsi)
JUPg) = = min|—22121 Aol si, ai), g(e, ATl (s;, a;
(0) = 7 3o minl 28 B AT s, 2), e AT 51,30

where

(e A) = (1+eA ifA>0
) = (1—€)A otherwise.

This means that if 76415 must be close to 1 otherwhise the gradient is null and there is no

mold (ailsi)
update.
v
Joseph Le Roux Generative Models for NLP January 9, 2026 26/36
Policy Learning: Proximal Policy Optimization (PPO) (3)
How to compute A in practice?
Q(si, aj) is approximated by the sum of rewards to go
T
Q(Sh ai) = Z re
t=i
V/(s;) is approximated by a neural network v,
typically a linear layer above the Transformer vector of w;
trained with the LM, by mean-squared error
v
Add entropic regularisation on 7y
discourage predicting too few actions per state
H(mo(:|s)) = — 32, mo(als) log ma(als)
V.
Final PPO objective:
T-1 N, I-1
2
JUPO) + > A H(ma(lsi) + ?((Z 1) — vo(si)?
i=0 Jj=i
v

Notes

Notes

Joseph Le Roux Generative Models for NLP January 9, 2026 27/36

Notes

Direct Policy Optimization (1)

Do we need really need reinforcement learning?

We use RL because we want to incorporate a reward score (not simply 0/1 scores)

but using full RL with a MDP formulation of LM. .. is maybe too much?
v

Can we take into account preferences (x, yc, y,) directly?

Direct Alignment algorithms

Link to the paper (3)
v

Joseph Le Roux Generative Models for NLP January 9, 2026 29/36

Notes

Direct Policy Optimization (2)

Start with the RL Objective with Regularization

argmax Er~x, [G(7)] — BREG(0)
0

Recall what the probability of a trajectory/response is:

7o (1) = (s, mo(ailsi)

G(7) is the sum of rewards for trajectory 7 (with possibly RLOO baseline)
v

RL objective with KL regularization
o (T) mo(7)]

arg;nax Ernmg[G(T)] — BE7~mg [log 7TSF7T(T)} = arglgnax Er~mg [G(T) — Blog s

something easy to compute!

We would like to see this as a KL divergence between 7y and ...

Joseph Le Roux Generative Models for NLP January 9, 2026 30/36

Direct Policy Optimization (3)

DPO as minimizing KL divergence

o (T)]
ﬂ-SFT(T)
7o (T)]
7rSFT(T)
mo(T)

1
= Errmg(l —G(1) — log ————
arggnax g [lOg €XP 5 (1) — log ﬂ.SFT(T)]

q 7 0(7-)
= Ernmg[log —— —
arg;nm o llog SFT (1)
) X exp 713 G(T)

argmax Er~x, [G(T) — Blog
0

1
=argmax Err, [E G(t) — log
0

log exp % G(1)]

= arg;nm Er~rg [log T

1
=argmin E; <, [log 7o (T)} with (1) = 7F7 (1) X exp = G(7)

() g(7) B

Notes

Almost there. .. but g is not a proper distribution (does not sum to 1)

Joseph Le Roux Generative Models for NLP January 9, 2026 31/36

Direct Policy Optimization (4)

From our objective

7?0(7)]

&(7)

Let us define a normalization for g: z =73 _, g(7’)

1
argmin Err, [log with g(7) = 7577 (7) x exp BG(T)
0

Note that g(7) = @ is a proper distributiuon (positive, sum to one)

We get a KL minimization

7 (T)
g(r)

mo(7)
&(r)
To(T) X z
&(7)
mo(7)

&)
z

argmin E-r, [log] =argmin E; x4 [log + log z]
6 0

]

=argmin E;r, [log
0

7T9(T)]

=argmin E;r, [log og
0 g(r)

| = arg;nin Ermmg [l

We finally have a KL minimization!

Notes

Joseph Le Roux Generative Models for NLP January 9, 2026 32/36

Direct Policy Optimization (5) Notes

What is good about KL minimization

KL is minimized when the two distribution are equal
We have the solution of our problem: 7y (7) = g(7)
v
But ...
in practice z (hence r) is not tractable
G still depends on training a reward model: not very convenient
v
We can express the sum of reward G from 7:
ﬂ'REF(T) X exp lG(T)
mo(r) = &(7) & mo(7) = . Loy — 1o T0LT) X 2
z < 3 (7) = log 7REF ()
wo(T) X z . 1G())
————— =exp—G(T X
7REF (1) p 8 & G(r) = Blog To\T) X Z
TREF (1)
- 1 G(r) o(T) X z)
exp —G(T) = —prr _ To\T
B8 wREF (1) < G(T1) —ﬁlogﬂ_REiF(T)—i-logz
v
Joseph Le Roux Generative Models for NLP January 9, 2026 33/36
Solution: From MLE/KL to Contrastive (back to word2vec?) Notes
Recall the preference model probability, and use our definition of G:
exp G(ye)
> =
PO =) = b Gle) + exp GO
. 1
1+ exp(G(yr) — G(ye))
=0(G(ye) — G(yr))
7o (ye) 7o (yr)
=o(Blog ——7—~ +logz — Blog ———— — log z)
TI'REF(yC) REF (yr)
mo(ye) mo(yr)
= o(fBlo — Blo
(Blog 7REF (0 ﬂ.REF(yr))

We can express the probability wtithout explicitly use a reward! We can train from preferences
directly

Training

For each triplet (x, yc, yr)

update 6 with the gradient of £(0; x, yc,yr) = log o(8log ﬂzgé{;z) — Blog ;,T?Zg;)r))

Joseph Le Roux Generative Models for NLP January 9, 2026 34/36

Bibliography Notes

Nathan Lambert (2024). Reinforcement Learning from Human Feedback, Online.

Nisan Stiennon and Long Ouyang and Jeff Wu and Daniel M. Ziegler and Ryan Lowe and Chelsea
Voss and Alec Radford and Dario Amodei and Paul F. Christiano (2020). Learning to summarize
from human feedback, CoRR.

Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D Manning and Stefano
Ermon and Chelsea Finn (2023). Direct Preference Optimization: Your Language Model is
Secretly a Reward Model.

Sutton, Richard S. and Barto, Andrew G. (2018). Reinforcement Learning: An Introduction, The
MIT Press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Machine Learning.

Joseph Le Roux Generative Models for NLP January 9, 2026 36/36

Notes

	Introduction
	Reinforcement Learning (from Human Feedback) for Generation
	Learning a Reward Function
	Online Policy Learning for Generation
	Offline Policy: DPO
	Conclusion

