
Generative Models for NLP
Introduction and Word Embeddings

Joseph Le Roux

30/12/25

Joseph Le Roux Generative Models for NLP 30/12/25 1 / 50

Outline

• Introduction

• Word Vectors

• Wor2dVec

• Complements

• From MLE to Contrastive Learning

• Relation MLE / Contrastive

• The End

Joseph Le Roux Generative Models for NLP 30/12/25 2 / 50

Notes

Notes

NLP

Various tasks that process data encoded in natural language (NL)
speech recognition, text classification, NL understanding, and NL generation. . .

At the crossroad of :
• Linguistics

• Computer Science (formal languages, automata, graphs. . .)

• Logic

• Machine Learning (probability/optimization/statistics)

• Artificial Intelligence

• Cognitive Sciences

Joseph Le Roux Generative Models for NLP 30/12/25 4 / 50

Language as a Symbolic System

Language
a system that allows a speaker (writer) to communicate (among other functions)

Elements of this system are discrete (symbols)
• speech/gestures/writings are transctiptions of this system

• if continuous, no writing system (discretization) possible without major loss of meaning

Problems for Machine Learning
• Requires many different symbols, some very frequent some very rare

• Discrete units make gradient descent impractical

Joseph Le Roux Generative Models for NLP 30/12/25 5 / 50

Notes

Notes

Why it’s difficult

Ambiguity at all levels
• saw, duck, her, round, like, (lexical amb. of words)

• I saw her duck (lexical amb. in context)

• John eats a pizza with a fork vs. John eats a pizza with an egg (syntactic amb., attachment)

• A computer that understands you like your mother (amb. syntaxique, rattachement)

• I seek a unicorn (semantic amb. existential quantification)

• avocat pourri → dirty lawyer, rotten avocado (expressions and translation)

Yes but. . . we understand each other!
• Context may help, but how?

• world knowledge, social convention, statistics may also help

• other modalities (vision, touch. . .)

Great variability
sometimes very ambiguous. . . in general simple (simple enough for humans to learn!)

Joseph Le Roux Generative Models for NLP 30/12/25 6 / 50

What we will discuss this year

Session 1: Word Embeddings
<2026-01-09 Fri>

• What are the units? how do we represent them?

Session 2: Language Models
<2026-01-16 Fri>

• How do we represent words in context

• How can we represent sequences and generate texts

Session 3: RNN/Transformers and Attention
<2026-01-23 Fri>

• Attention mechanism

Session 4: Fine-tuning LLMs with RLHF and DPO
<2026-01-30 Fri>

• How to incorporate application preferences in LLMs

Session 5: Latent Variable Models for text: Diffusion Language Models
<2026-02-06 Fri>

• New Models for Text generation

Joseph Le Roux Generative Models for NLP 30/12/25 7 / 50

Notes

Notes

Words / Vocabulary / Lexicon / Index

Definitions
• word (token) = atomic element : dog, car, the, Trump . . .

– what about letters?

• Vocabulary V finite set of all accepted words

• add a special token UNK

– representing all the things in texts that are not words (ie qwerw3y)
– representing all the words that may be missing in V

• Lexicon LV finite set of words or UNK : LV = V ∪ {UNK}

• Language LV is the set of strings on the lexicon L∗
V =

⋃∞
i=0 Li

V = {ε} ∪ L ∪ LL ∪ . . .

• To each element of the lexicon L correponds a unique integer, its index, between 0 (for UNK)
and |V|.

Joseph Le Roux Generative Models for NLP 30/12/25 9 / 50

Word sense – Word meaning

Fundamental issue in NLP: assign a meaning to words

Different point of views:
• Linguistics: link signifier (sound/writing) and the signified (the thing/the meaning)

– not really mechanizable

• Ontology (data/knowledge base): organize a hierarchy of concepts and terms on a semantic
basis

– do not really say anything about usage (how to use words)

• CS/NLP: pragmatic approach, meaning depends on context defined by application

– EX: if a vocal assistant must perform the same when user says play the Beatles or put the Beatles on
or read the Beatles, in this context play,read,put on must have the same meaning/representation

– Moreover their meaning is to launch the player

Joseph Le Roux Generative Models for NLP 30/12/25 10 / 50

Notes

Notes

Multi-dimensional representation (word vectors)

Assume contexts are countable (and sparse)
Then, if meaning depends on context, and if context can change, we can represent words as
vectors with one dimension by context.

Synonymity between two words
• Compute distance / inner product between their vectors.

• Partial synonyms, depend on contexts

• Geometrical Meaning!

Geometrical Meaning
• Represent words in dense vectors Rd

• Distance/similarity interpreted as semantic relatedness (eg synonyms)

Eg. assuming that play and launch are closer semantically than play and clean, we have:

‖V (play)− V (launch)‖22 ≤ ‖V (play)− V (clean)‖22

Joseph Le Roux Generative Models for NLP 30/12/25 11 / 50

(A long time ago. . .)

Very different representations in NLP/CL!
Lexicon elements used to be considered as unique by default. Equivalently, they were represented
by one-hot vectors in {0, 1}|LV |. For instance:

play [000000000010000000]
read [001000000000000000]
stop [000000000000000100]

All tokens were orthogonal, (inner product zero, distance
√
2), whether they had the same

meaning or not. Geometry meant nothing

Joseph Le Roux Generative Models for NLP 30/12/25 12 / 50

Notes

Notes

Contextual (or Distributional) Representation

Contexts as neighbouring words
You shall know a word by the company it keeps. (J. R. Firth, 1957)

An old idea in linguistics, used in NLP since 90s/00s
The meaning of a word can be inferred from its usage, therefore from the sequence of token in
which it appears.
A word is represented by a set of contexts

Example
For instance for théorie in a French text corpus:

. . . Ezion qui le mettaient en théorie à l’ abri de soucis . . .

. . . essais assez pointus sur une théorie mathématique quelques articles réunis trois . . .

. . . poète météo dépendant pas de théorie .

théorie = { . . . Ezion qui le mettaient en, à l’ abri de soucis . . . , . . . essais assez pointus sur
une, mathématique quelques articles réunis trois . . . , . . . }

Observation
• The more contexts 2 words have in common, the more they share meaning.

• This is not scalable ⇒ contexts must be compressedJoseph Le Roux Generative Models for NLP 30/12/25 13 / 50

Word Vectors x Distributional Representation = Word Space Models

Vector similarity is the only information present in Word Space: semantically related words
are close, unrelated words are distant. (H. Schütze, 1993)

In the 90s several methods appear, based on word co-occurrences, with dimension reduction
for efficiency and densification.

Big Picture
1. Associate each lexicon elt e to a vector count ve of length |LV |, initialized to zero

2. From a set of documents

– count ne,e′ for each lexelt e, the number each e′ occurs in the neighbourhood of e
– filter: discard tokens such as a, the. . . , limit to a window of k tokens around e,
– set ve [id(e′)] = ne,e′

3. Concatenate all vectors ve ,∀e into a co-occurrence matrix M

– perform some normalization (eg TF/IDF or a variant)

4. M is big and sparse

– use (Truncated) Singular Value Decomposition to get matrix M′

– such as M′
e is a dense vector of dimension d << |LV |

Joseph Le Roux Generative Models for NLP 30/12/25 14 / 50

Notes

Notes

Word Vectors x Distributional Representation = Word Space Models (2)

Usage
To decide whether two words are similar semantically, DR usually uses normalized inner product
also called cosine similarity:

sim(x , y) =
∑

i xi yi√∑
i x2

i

√∑
i y2

i

=
x · y

(
√

x2)(
√

y2)
=

〈x , y〉
|x | × |y |

(what are the min/max values of sim)

Issues with distributional approach
• normalisation, scaling → compression (matrix dimension reduction)

• not incremental → need to retrain from scratch for new data

Joseph Le Roux Generative Models for NLP 30/12/25 15 / 50

Word2Vec (2)

Algorithm to parametrize word vectors
• implements Firth’s principle, related to SVD methods (1)

• simple idea (but implementation may be tricky)

Not a Neural Network but
• the resulting vectors will be used as input by NNs later

• learning performed via gradient descent

• probabilistic modelling (and approximation)

A little old. . .
• More powerful recent methods

• . . . but Word2Vec is simple and implements Firh’s idea quite directly

Joseph Le Roux Generative Models for NLP 30/12/25 17 / 50

Notes

Notes

WordVec Skip-gram Model

Principle
1. Assume we have a corpus of texts (big, >1M words) for training;

2. We set vocabulary V , out of vocabulary (OOV) words are replaced by token UNK;

3. At each position t of a text, we write token c at position t and its neighbouring tokens Oc
(words in a window of size m around t). We assume a factorized probability to generate
neighbouring tokens: p(Oc |c; θ) =

∏
o∈Oc

p(o|c; θ)

4. From the computation of similarity between center word vector vc and context word vectors
vo , we will define probability pθ(o|c);

5. Training objective: maximize parameters for likelihood:
∏

c p(Oc |c; θ).

Loss
Maximizing the log-likelihood amounts to the following loss:

max
θ

log
∏

t

∏
o∈Ot

p(o|ct ; θ) = max
θ

∑
t

∑
o∈Ot

log p(o|ct ; θ)

= min
θ

∑
t

∑
o∈Ot

− log p(o|ct ; θ)

Joseph Le Roux Generative Models for NLP 30/12/25 18 / 50

Word2vec: Neighbours and Probability

Window
• Given a position t in text, we write wt , the token at this position

• A window of size m centered at position t, noted Ot consists of all words
wi , ∀(t − m) ≤ i ≤ (t + m)

Word2vec defines probability distributions
• Probability for all words w ′ to be in a window (of predefined size m) of a specific word w

• In the remainder, we call p(w ′|w) neighbourhood probability

Example

. . . sur une théorie mathématique quelques . . .

p(wt+1|wt)

p(wt+2|wt)

p(wt−1|wt)

p(wt−2|wt)

Joseph Le Roux Generative Models for NLP 30/12/25 19 / 50

Notes

Notes

Word2vec : Maximum Likelihood Estimation (MLE)

General method to cast a ML problem (eg optimized by SGD) into a probabilistic framework.
Probabilities are computed from scores given by a network with parameters θ

Definition (Likelihood)
A function returning a corpus probability (assume iid observations) from given parameters:

V (θ) =
∏
t∈T

p(Ot |wt ; θ) =
∏
t∈T

∏
t−m≤j≤t+m

p(wj |wt ; θ)

Intuition
Observations must be more probable that any event that we did not observed, and because
observations happened they must have a probability 1. We want to maximize V :

θ∗ = arg max
θ

V (θ) = arg max
θ

∏
t

∏
t−m≤j≤t+m

p(wj |wt ; θ)

Joseph Le Roux Generative Models for NLP 30/12/25 20 / 50

Word2vec: From MLE to continuous optimization

Product → Sum
V (θ) is a product: difficult to optimize. log is monotone so we can write:

θ∗ = arg max
θ

log V (θ) = arg max
θ

∑
t

∑
t−m≤j≤t+m

log p(wj |wt ; θ)

Minimization
We prefer minimizing a loss function:

θ∗ = arg min
θ

− log V (θ) = arg min
θ

∑
t

∑
t−m≤j≤t+m

− log p(wj |wt ; θ)

Finally − log V (θ) is a loss function
• positive

• zero when no error

Joseph Le Roux Generative Models for NLP 30/12/25 21 / 50

Notes

Notes

Parametrization of probabilities

Similarity between words
• We want to measure similarity between token wt et context token wo

• Similarity of their associated vectors → inner product

• Issue with inner product: v>
1 v2 is maximal when v1 = v2. we want to avoid trivial solution:

vi = vj∀i , j

• Solution: define 2 vectors per token mot m:

1. vm when m is the center position of the window
2. um when m is a context position in the window.

From similarity to proability
• in p(w ′|w), use inner product u>

w′vw

• we use softmax:
for a vector a = [a1 . . . an] softmax return a vector:

softmax(a)[i] = exp(a[i])∑
j exp(a[j])

Joseph Le Roux Generative Models for NLP 30/12/25 22 / 50

Parametrization of probabilities (2)

Inner product + softmax =

p(w ′|w) =
exp(u>

w′vw)∑
w′′ exp(u>

w′′vw)

Softmax implements the idea that the more context w ′ is similar to center w , that the higher
u>

w′vw the more probable it is to appear in a window.
How to implement?

Joseph Le Roux Generative Models for NLP 30/12/25 23 / 50

Notes

Notes

First implementation

In lab, you will code an efficient batched version

import torch

class Word2Vec(torch.nn.Module):
def __init__(self, corpus, lexicon_size, vec_size):

2 tables to define from data:
#word2idx table token -> index
#idx2word table index -> token

U = torch.nn.Embedding(lexicon_size, vec_size)
V = torch.nn.Embedding(lexicon_size, vec_size)

returns the sim. score for all token as contexts of w_c
def forward(self, idx_c):

inner product with all vectors in U
logits = self.U.weight @ self.V(idx_c)
return logits

Joseph Le Roux Generative Models for NLP 30/12/25 24 / 50

First implementation (2)

import torch

def train(net, opt, train_set, nb_epoch):

loss_fn = torch.nn.CrossEntropyLoss()
to adapt for lab sessions
to deal with batched input
for epoch in range(nb_epoch):

train_set.shuffle()
for (o,c) in train_set:

logits = net(c)
loss = loss_fn(logits, o)
loss.backward()
opt.step()
opt.zero_grad()

w2v = Word2Vec(corpus, 10000, 20)
TODO: conversion between data and training set
#optimizer = ...
train(w2v, optimizer, train_set, 20)

Joseph Le Roux Generative Models for NLP 30/12/25 25 / 50

Notes

Notes

Some issues with this version
Softmax on vocabulary

p(w ′|w) =
exp(u>

w′vw)∑
w′′ exp(u>

w′′vw)

Will not scale for large vocabularies:

• complexity (time/memory) (denominator)

• rounding errors

In the real Word2vec
• many modifications to improve efficiency

• less rounding errors

Coming up next:
• a better implementation

• interpretation/explanation of the implementation

• beaucoup d’équations

Joseph Le Roux Generative Models for NLP 30/12/25 26 / 50

MLE and Cross Entropy

In Pytorch learning with MLE uses a function called cross entropy

Definition (Entropy of a distribution)
a measure of the randomness of a distribution

H(p) = −
∑
c∈C

p(c) log p(c)

• H(c) ≥ 0

• If p uniform (ie random) H(p) = log(|C|)

• If p deterministic (p(ci) = 1), H(p) = 0

Joseph Le Roux Generative Models for NLP 30/12/25 28 / 50

Notes

Notes

MLE and Cross Entropy (2)

Definition (Conditional Entropy / Cross Entropy)
Allows to compute a kind of distance between 2 distribution

CE(q, p) = −
∑

c
q(c) log p(c)

Definition (Empirical distribution pe)
• distribution of observed data s = ci always 0/1

• for a multinomial, if for pe(ci) = 1 then ∀j 6= i , p(cj) = 0

• (generalizezs to mean for several examples)

Equivalence
Let us compute the cross-entropy between:

• q the empirical distribution

• p the distribution computed by our model

Joseph Le Roux Generative Models for NLP 30/12/25 29 / 50

MLE and Cross Entropy (3)

H(q, p) =−
∑

c
q(c) log p(c)

=− q(ci) log p(ci)−
∑
c 6=ci

q(c) log p(c)

=− 1× log p(ci)−
∑
c 6=ci

0× log p(c)

H(q, p) =− log p(ci)

We recover − log p(x), the loss we defined for MLE

Joseph Le Roux Generative Models for NLP 30/12/25 30 / 50

Notes

Notes

Cross-Entropy in Pytorch (1)

classifier for input of size 10, 5 classes
8 hidden neurons (cf. DATA MINING)
net = MLP(10,[8],5)

let us pretend the following tensor contains
the input for 3 examples
inputs = torch.rand(3,10)

we obtain the 5 scores for all 3 examples
preds = net(inputs)

let us suppose that the correct classes were:
empirical = torch.tensor([0,2,1], dtype=torch.long)

loss_function = torch.nn.CrossEntropyLoss()

note that we do not compute log softmax (inside CE)
loss = loss_function(preds, empirical)

loss.backward() # and the rest...

Joseph Le Roux Generative Models for NLP 30/12/25 31 / 50

Cross-Entropy in Pytorch (2)

After training, prediction:

let us pretend the following tensor contains
the input for 3 examples
inputs = ...

we obtain the 5 scores for all 3 examples
predictionss = net(inputs)

#apply the argmax for each line:
outputs = torch.argmax(predictionss, dim=1)

pas de cross-entropy, pas de softmax : pourquoi ?

Joseph Le Roux Generative Models for NLP 30/12/25 32 / 50

Notes

Notes

Constrastive Sampling Approach of Mikolov et al. (1)

Softmax inefficient → alternative method to train word vectors.

From word probability to class probability
Define probability p(D = d |w ′,w) for 2 classes d :

• d = 1 if w ′ is a word that belongs to a possible context for w

• d = 0 otherwise

• of course we have: p(D = 0|w ′,w) = 1− p(D = 1|w ′,w)

How to model binomial distribution? (2 classes)
• softmax possible but. . .

• sigmoid more natural σ(x) = 1
1+exp(−x)

• combine sigmoid and similarity:

p(D = 1|w ′,w) =
1

1 + exp(−uw′ · vw)

Joseph Le Roux Generative Models for NLP 30/12/25 34 / 50

Constrastive Sampling Approach of Mikolov et al. (2)

What we want to do
• train vector for tokens from a corpus organised in sentences. . .

• . . . by using a loss function that involves a similarity beetween word vectors

• efficient: we want to avoid iterating through the lexicon

Maximum Likelihood Estimation
For each position t in the training corpus:

• we want to correctly classify (w ′,wt) (to 0 or 1) for all w ′

• we write k(c,w) the class of context candidate c for token w (set to 0 or 1) in the training
set. MLE amounts to:

θ∗ = max
θ

∑
t

Ew∼Pwt (.)
[log p(D = k(w ,wt)|w ,wt)]

Joseph Le Roux Generative Models for NLP 30/12/25 35 / 50

Notes

Notes

Constrastive Sampling Approach of Mikolov et al. (3)

Maximum Likelihood Estimation: Decompose on positive/negative class
expectations:

θ∗ = max
θ

∑
t

Ew∼Pwt (.)
[log p(D = k(w ,wt)|w ,wt)] (1)

= max
θ

∑
t

∑
w

Pwt (w) log p(D = k(w ,wt)|w ,wt) (2)

= max
θ

∑
t

∑
w

1∑
i=0

P(D = i)× Pwt (w |D = i) log p(D = k(w ,wt)|w ,wt) (3)

= max
θ

∑
t

1∑
i=0

∑
w

P(D = i)× Pwt (w |D = i) log p(D = k(w ,wt)|w ,wt) (4)

= max
θ

∑
t

1∑
i=0

P(D = i)
∑

w
Pwt (w |D = i) log p(D = k(w ,wt)|w ,wt) (5)

= max
θ

∑
t

1∑
i=0

P(D = i)Ew∼P i
wt (·)

[log p(D = k(w ,wt)|w ,wt)] (6)

= max
θ

∑
t

1∑
i=0

P(D = i)Ew∼P i
wt (·)

[log p(D = i |w ,wt)] why ? (7)

Joseph Le Roux Generative Models for NLP 30/12/25 36 / 50

Constrastive Sampling Approach of Mikolov et al. (4)

Add the following assumptions:

There are more negative examples than positive examples
• ∃κ = 1, 2, . . . ,N such that P−(D = 0) = κ× P+(D = 1)

• in other words, the negative class is κ times more likely than the positive class

Expectations can be approximated by sampling efficiently (Monte-Carlo!)
For a position t, we want to maximize:

Ew∼P1
t (.)[log p(D = 1|w ,wt)] + κEw∼P0

t (.)[log p(D = 0|w ,wt)]

Expectations → Sampling:

log p(D = 1|w+,wt)] +
κ∑

i=1

log p(D = 0|w−i ,wt)]

• w+ drawn randomly from distribution P+
wc

• w−i drawn randomly from ditribution P−
wc

Joseph Le Roux Generative Models for NLP 30/12/25 37 / 50

Notes

Notes

Constrastive Sampling Approach of Mikolov et al. (5)

We also need to define distributions P+ et P−

For the positive class
draw randomly a token from the window around position t

P+
t (w) =

{
1

|Ot |
if w ∈ Ot ,

0 otherwise

For the negative class
Use the frequency of a word in training set as probability:

P−
t (w) =

#w∑
w′ #w ′ = f (w)

In Mikolov’s implementation, use a flattened version:

P−
t (w) =

#w
3
4∑

w′ #w ′ 3
4

Joseph Le Roux Generative Models for NLP 30/12/25 38 / 50

Constrastive Sampling Approach of Mikolov et al. (6)

Finally we obtain the Mikolov’s loss:

max
∑

t

(
logσ(uw+ · vwt) +

κ∑
i=1

logσ(−uw−i · vwt)

)

• This is a maximization: we get the loss function by multiplying by −1

Joseph Le Roux Generative Models for NLP 30/12/25 39 / 50

Notes

Notes

Constrastive Sampling Approach of Mikolov et al. (7)

A small trick to get a better model:

Subsampling
Do not take into account all the words in the training set:

• remove all words that appear less than n times (set n = 2, 3, 4, 5 . . .)

• remove at random very frequent words in contexts. For each token w in the lexicon,
eliminate w from Ot with probability:

Pd (w) = ReLU(1−
√

t
f (w)

)

with t = 10−5

• in words, words with frequency equal to or above t are always discarded.

• beware if we remove a word from context Ot , we still have to keep the size of the window
(2m): need to extend window boundaries

Joseph Le Roux Generative Models for NLP 30/12/25 40 / 50

From MLE to Contrastive

Another way to look at contrastive estimation of word vectors
• a series of approximations/assumptions from the MLE model

• sheds new light on the relation between the two

Joseph Le Roux Generative Models for NLP 30/12/25 42 / 50

Notes

Notes

From Definition to Implementation: Gradient

Let us derive the gradient for one example:
∇L(θ;w ′,w) = ∇− log p(w ′|w; θ) = ∇− log

exp(u>
w′vw)∑

w′′ exp(u>
w′′vw)

= ∇
(

log
(∑

w′′
exp(u>

w′′vw)
)
− u>

w′vw
)

= ∇
(

log
(∑

w′′
exp(u>

w′′vw)
))

−∇(u>
w′vw)

=
∇
∑

w′′ exp(u>
w′′vw)∑

w′′ exp(u>
w′′vw)

−∇u>
w′vw

=

∑
w′′ ∇ exp(u>

w′′vw)∑
w′′ exp(u>

w′′vw)
−∇u>

w′vw

=

∑
w′′ exp(u>

w′′vw)∇u>
w′′vw∑

w′′ exp(u>
w′′vw)

−∇u>
w′vw

=
∑
w′′

p(w ′′|w ; θ)∇u>
w′′vw −∇u>

w′vw

= Ew′′∼p(.|w ;θ)[∇u>
w′′vw]−∇u>

w′vw

Joseph Le Roux Generative Models for NLP 30/12/25 43 / 50

From Definition to Implementation: A New Objective

Recap: we want ∇L(θ;w ′,w) = 0

• equivalently: Ew′′∼p(.|w ;θ)[∇u>
w′′vw]−∇u>

w′vw = 0

• But this gradient is also the gradient of:

F (θ;w ′,w) = Ew′′∼ ̂p(.|w ;θ)
[u>

w′′vw]− u>
w′vw

• where x̂ means x is considered a constant (null gradient)

Conclusion We can learn with F instead of L (they have the same solution)

Wait. . . we still have to iterate over all words (expectation)
• Idea: sample only a few words, not all the lexicon

With wk ∼ p(.|w ; θ) : F (θ;w ′,w) ≈
1

K

K∑
k=1

[u>
wk vw]− u>

w′vw

with wk sampled from p

Joseph Le Roux Generative Models for NLP 30/12/25 44 / 50

Notes

Notes

From Definition to Implementation: Efficient Sampling

With wk ∼ p(.|w ; θ) : F (θ;w ′,w) ≈
1

K

K∑
k=1

[u>
wk vw]− u>

w′vw

Problems when sampling with p
To sample with p, we need to compute the denominator and iterate over the lexicon. . .

Solution
• Find an efficient approximation to p(.|.; θ)

• word2vec uses the frequency of words in training corpus

Pu(w) =
#w∑
w′ #w ′

• or a flattened version
P′

u(w) =
#w0.75∑
w′ #w ′0.75

Joseph Le Roux Generative Models for NLP 30/12/25 45 / 50

From Definition to Implementation: Rectification (1)

With wk ∼ P′
u(.) : F (θ;w ′,w) ≈

1

K

K∑
k=1

[u>
wk vw]− u>

w′vw

Recall : inner product ≈ vector similarity
• u>

w′vw must be positive (it’s similar!)

• u>
wk vw must be negative (it’s not an observation!)

Use a Rectifier
We ignore the result of an inner product if it does not have the expected sign

• We could use ReLU(x)=max(x,0) (maybe. . .)

• in word2vec use a differentiable variant softplus

sp(x) = log(1 + exp(x))

• pay attention to minus signs - in the definition of F

Joseph Le Roux Generative Models for NLP 30/12/25 46 / 50

Notes

Notes

From Definition to Implementation: Rectification (1)

F (θ;w ′,w) ≈
1

K

K∑
k=1

[−sp(−u>
wk vw)]− sp(u>

w′vw)

1

K

K∑
k=1

[− log(1 + exp(−u>
wk vw))]− log(1 + exp(u>

w′vw))

1

K

K∑
k=1

[log(
1

1 + exp(−u>
wk vw)

)] + log(
1

1 + exp(u>
w′vw)

)

1

K

K∑
k=1

[log(σ(u>
wk vw))] + log(σ(−u>

w′vw))

Can we recover contrastive estimation??
With wk ∼ P′

u(.): F (θ;w ′,w) ≈
1

K

K∑
k=1

[logσ(u>
wk vw)] + logσ(−u>

w′vw)

One last step to recover the signs of contrastive estimation

Joseph Le Roux Generative Models for NLP 30/12/25 47 / 50

Conclusion

Word2vec
• Simple Idea, implements Firth’s principle in an efficient way

• Probabilistic modelling : MLE/Constrative

• Many tricks to scale up:

Extensions
Dynamic Vectors: Word Vectors + Functions (NNs) to adapt Word vectors to each context
(ElMO, BERT. . .)

Joseph Le Roux Generative Models for NLP 30/12/25 49 / 50

Notes

Notes

Bibliography

Levy, Omer and Goldberg, Yoav (2014). Neural Word Embedding as Implicit Matrix
Factorization, Curran Associates, Inc..
Mikolov, Tomas and Grave, Edouard and Bojanowski, Piotr and Puhrsch, Christian and Joulin,
Armand (2018). Advances in Pre-Training Distributed Word Representations, European Language
Resources Association (ELRA).

Joseph Le Roux Generative Models for NLP 30/12/25 50 / 50

Notes

Notes

	Introduction
	Word Vectors
	Wor2dVec
	Complements
	From MLE to Contrastive Learning
	Relation MLE / Contrastive
	The End

