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What is a Language Model?

Definition (Language Model)
A language model is a function that defines a joint probability distribution p(w1,w2, . . . ,wn), over an ordered
sequence of tokens w = (w1,w2, . . . ,wn). Each wk ∈ V, a finite set of tokens called the vocabulary. A valid
language model must satisfy the constraint: ∑

w∈W

p(w) = 1,

where W ⊆ V∗ is the (possibly infinite) set of all token sequences (recall the definition of a formal language).

Chain Rule of Probability
Using the chain rule, we can factorize this joint probability as:

p(w1,w2, . . . ,wn) =
n∏

k=1

p
(
wk | w1, . . . ,wk−1

)
.

Each term p(wk | w1, . . . ,wk−1) is a conditional probability of the current token given all previous tokens.

• Interpretation:
– The model measures how “natural” or likely a sequence is.
– Each factor p(wk | w1, . . . ,wk−1) represents how likely the next token wk is given the context (w1, . . . ,wk−1).
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Generative vs. Discriminative Models: Basic Concepts

Generative Models
A generative model aims to learn the joint probability p(x, y), where x represents the observed data (e.g., a
sequence of tokens) and y represents labels, latent variables, or outputs (can be structured).

• A language model is generative because it learns p(w1, . . . ,wn), i.e., the probability of entire sequences.

• Once a generative model is learned, you can derive p(x | y) = p(x, y)
p(y) , and p(y | x) = p(x, y)

p(x) .

• The marginal probability of x, necessary for computing p(y | x), is obtained by summing (or integrating)
over all possible values of y :

p(x) =
∑

y
p(x, y) (discrete case)

Discriminative Models
A discriminative model directly learns the conditional probability p(y | x), without modeling the joint
distribution p(x, y) or the data likelihood p(x).

• A discriminative text classifier takes an input sequence x = (w1,w2, . . . ,wn) and predict a class label y
(e.g., positive or negative sentiment) and directly models p(y | x).
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Tokenization: Definitions and Approaches

What is Tokenization?
• Tokenization is the process of splitting text into smaller units, called tokens, which serve as the atomic

input to language models.
• A token can be:

– A full word
– A subword or morpheme
– A single character (especially in low-resource or highly morphologically rich languages)

Key Considerations
• Vocabulary Size:

– Large vocabulary =⇒ fewer unknowns or Out-Of-Vocaulary (OOV) tokens, but increases parameter count.
– Small vocabulary =⇒ risk of high OOV rates, or reliance on subword tokens.

• Handling Unknown Words:
– Use a special <unk> token, or fallback to character-level tokens.

• Granularity:
– Word-Level: Simplest, but OOV issues can be severe.
– Subword-Level (BPE, WordPiece, SentencePiece): Balances coverage and vocabulary size.
– Character-Level: No OOVs, but leads to longer sequences and sometimes slower training.
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Byte-Pair Encoding (BPE): Algorithm and Vocabulary Evolution I

Core Idea of BPE
• Byte-Pair Encoding (BPE) is a data compression technique adapted for tokenization.
• Iteratively merges the most frequent pair of symbols (characters or subwords) into a single token.
• Produces a subword-based vocabulary that reduces out-of-vocabulary issues while controlling vocabulary size.

Algorithm (High-Level Steps)
1. Initialize Vocabulary V0:

– Each unique character is its own token (e.g., l, o, v, e, c, a, t, s, plus any spaces or special markers).
2. Count Pair Frequencies:

– Scan the training text for adjacent token pairs (e.g., l+o, o+v, etc.).
3. Merge Most Frequent Pair:

– Combine that pair into a single token (e.g., o_v).
– Update your text (i.e., each occurrence of o v becomes the new merged token).
– Add this newly merged token to your vocabulary V1.

4. Repeat for n merges or until desired vocabulary size is reached.

Nadi Tomeh Generative Models for NLP 24/1/25 8 / 84



Byte-Pair Encoding (BPE): Algorithm and Vocabulary Evolution II

Vocabulary & Text Evolution (Simplified Example)
Training Text (repeated twice): i love love cats
Initial vocabulary V0 (characters only):

V0 = {i, l, o, v, e, c, a, t, s}

Step 1: Most frequent adjacent pair is l + o.

Merge (l, o)→ l_o. V1 = V0 ∪ {l_o}.

Text now becomes: i l_o v e l_o v e c a t s
Step 2: Next frequent pair might be l_o + v.

Merge (l_o, v)→ l_o_v. V2 = V1 ∪ {l_o_v}.

Text now becomes: i l_o_v e l_o_v e c a t s
Step 3: Merge l_o_v + e to form l_o_v_e, etc.
Over several merges, common subwords like cat or love end up as single tokens.
Final Vocabulary Vn (after n merges):

Vn = {i, l_o_v_e, c_a_t_s, . . . }

Why BPE is Useful
• Reduced OOVs: Rare words can be decomposed into known subwords (e.g., homework → home + work).
• Tunable Vocab Size: Stop merges early for a smaller vocab, or merge more pairs for fewer but larger tokens.
• Empirical Success: Widely adopted in modern NLP (e.g., GPT, RoBERTa) for balancing coverage and

memory footprint.
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Applications

Evaluating Text Likelihood
• Given a sequence w = (w1,w2, . . . ,wn), compute its probability: p(w) =

∏n
k=1 p(wk | w1, . . . ,wk−1).

• Use Cases:
– Speech Recognition & Machine Translation: Re-rank candidate outputs based on their probabilities.
– Error Correction: Identify unlikely sequences as potential errors.
– Quality Assessment: Evaluate fluency and coherence of text in various applications.

Text Generation
• Next-Token Prediction: Iteratively extend the sequence (w1,w2, . . . ,wk−1)→ (w1,w2, . . . ,wk−1,wk) until

a stopping criterion is met.
• Used for dialogue systems, creative content creation, and auto-completion.

Generalization
Used for modeling any kind of sequences: code, time series, etc.
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Parameterization of Language Models

Parameterized Probability
Rather than directly specifying p(wk | w1, . . . ,wk−1), language models introduce a set of parameters θ to define:

pθ(wk | w1, . . . ,wk−1).

• The joint probability over a sequence is then parameterized as:

pθ(w1, . . . ,wn) =
n∏

k=1

pθ(wk | w1, . . . ,wk−1).

• Parameterization allows using various model architectures:
– n-gram models: Use fixed-context frequency counts with parameters derived from observed counts.
– Neural networks: Use parameters θ to encode complex dependencies (e.g., in RNNs, Transformers).

• The goal: Find θ that best captures the underlying language patterns.
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Estimation of Parameters from Data

Statistical Estimation
In probability theory, the distribution p(x) is assumed known, and we derive properties (e.g., expectations,
variances) from that distribution. In statistics, the distribution is unknown, and we estimate its parameters or
form based on observed data D.

Maximum Likelihood Estimation (MLE)
Given a training corpus D = {w(i)}N

i=1, estimate parameters by maximizing the likelihood:

θ̂MLE = arg max
θ

N∏
i=1

pθ(w(i)).

Equivalently, maximize the log-likelihood:

θ̂MLE = arg max
θ

N∑
i=1

log pθ(w(i)) = arg max
θ

N∑
i=1

n(i)∑
k=1

log pθ(w (i)
k | w

(i)
1 , . . . ,w (i)

k−1).

where n(i) is the length of sequence i . Optimization is typically performed using gradient-based methods (e.g.,
stochastic gradient descent) and backpropagation for neural models.
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Markov Assumption in Language Modeling

Full Conditional Probability
Recall the chain rule for a sequence w = (w1,w2, . . . ,wn):

p(w) =

n∏
k=1

p(wk | w1, . . . ,wk−1).

Markov Assumption
The Markov assumption simplifies this by assuming that the probability of the next token depends only on a
finite history of previous tokens:

p(wk | w1, . . . ,wk−1) ≈ p(wk | wk−n+1, . . . ,wk−1),

where n is the order of the Markov model.

• This finite memory assumption reduces computational complexity and makes estimation from data feasible.
• It introduces conditional independence: wk is independent of tokens beyond the last n − 1 given the recent

history.
• Leads directly to n-gram models, where probabilities are estimated based on limited context of length n− 1.

Nadi Tomeh Generative Models for NLP 24/1/25 16 / 84



Parametrization of n-Gram Models Using Categorical Distributions

Parametrization
• For each possible (n − 1)-gram context c = (wk−n+1, . . . ,wk−1), define a categorical distribution:

pθ(wk | c) = θc,wk , where
∑

wk∈V

θc,wk = 1.

• θc,wk represents the probability of observing wk given the history c.
• For each context c, the model stores a parameter vector:

θc =
(
θc,w1 , θc,w2 , . . . , θc,w|V|

)
,

which lies in the |V|-dimensional probability simplex.
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Parameters of n-Gram Models

Number of Parameters
• Total parameters:

|V|n−1 · (|V| − 1),

where:
– |V|n−1: Number of possible (n − 1)-token contexts.
– |V| − 1: Free parameters per context (due to the simplex constraint).

Parameter Estimation
Parameters are estimated using maximum likelihood in closed form:

θ̂c,wk =
count(c,wk)

count(c) ,

where:
• count(c,wk): Number of times (c,wk) appears in the training corpus D.
• count(c) =

∑
wk∈V count(c,wk): Total occurrences of c.
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Deriving the MLE for n-Gram Language Models I

Log-Likelihood for n-Gram Models

Given a training corpus D = {w(i)}M
i=1, where each sequence w(i) = (w (i)

1 , . . . ,w (i)
n(i)), the log-likelihood of the

parameters θ is:

L(θ;D) =
M∑

i=1

log pθ(w(i)) =
M∑

i=1

n(i)∑
k=1

log pθ(w (i)
k | c

(i)
k ),

where c(i)
k = (w (i)

k−n+1, . . . ,w
(i)
k−1) is the (n − 1)-token context.

Maximizing the Log-Likelihood
Substitute pθ(wk | c) = θc,wk :

L(θ;D) =
∑

c∈VN−1

∑
w∈V

count(c,w) log θc,w .

Subject to the constraint that for each context c,∑
w∈V

θc,w = 1.
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Deriving the MLE for n-Gram Language Models II

Solving with Lagrange Multipliers
Define the Lagrangian:

L′(θ,λ) =
∑

c∈VN−1

∑
w∈V

count(c,w) log θc,w +
∑

c∈VN−1

λc

(
1−

∑
w∈V

θc,w

)
.

Taking the derivative w.r.t. θc,w and setting to zero:

∂L′

∂θc,w
=

count(c,w)

θc,w
− λc = 0 =⇒ θc,w =

count(c,w)

λc
.

Enforce the normalization constraint:∑
w∈V

θc,w = 1 =⇒ λc = count(c).

Subtitute λc back to get the MLE estimate for θc,w :

θ̂c,w =
count(c,w)

count(c) .

Nadi Tomeh Generative Models for NLP 24/1/25 20 / 84



Order of n-Gram Models

Definition of Order
• An n-gram model uses the last n − 1 tokens to predict the next token:

p(wk | w1, . . . ,wk−1) ≈ p(wk | wk−N+1, . . . ,wk−1).

• The integer n is called the order of the model. For example:
– n = 1: Unigram model (context-free).
– n = 2: Bigram model (1-token context).
– n = 3: Trigram model (2-token context).

Impact of Model Order
• Higher order (n large):

– Captures longer-range dependencies in text.
– Increases the number of parameters dramatically, leading to potential data sparsity.

• Lower order (n small):
– Fewer parameters, simpler to estimate from limited data.
– May miss important context (lacks expressive power).
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Data Sparsity in n-Gram Models

Where Does Sparsity Come From?
• The vocabulary V can be large (tens or hundreds of thousands of tokens).
• As N grows, so does the number of possible (n − 1)-token contexts: |V| n−1.

• Many valid (n − 1)-gram contexts may appear zero or very few times in the training data D.

Consequences of Data Sparsity
• Zero Counts: Some (n − 1)-gram contexts are never observed, leading to

θ̂c,w =
count(c,w)

count(c) = 0 (no observed tokens).

• Poor Generalization: A context not seen in training has probability 0, causing the entire probability of any
sentence containing such a context to also become 0.

• Need for Smoothing: Techniques like Laplace, Kneser–Ney, or Good–Turing adjust counts to avoid
assigning zero probability.

• Memory and Computation: Large |V|n−1 means storing and computing vast tables for θc,w .
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Laplace Smoothing (Add-One Smoothing)

Motivation
• Pure MLE often assigns zero probability to unseen (n − 1)-gram contexts.
• Smoothing redistributes probability mass to ensure every event has a nonzero probability.

Formula for Add-One Smoothing
• Original MLE estimate:

θ̂c,w =
count(c,w)

count(c) .

• Add-One smoothing (Laplace):

θ̂Laplace
c,w =

count(c,w) + 1

count(c) + |V| .

- Each (c,w) is treated as if it appeared at least once.
- Denominator adds |V| to account for adding 1 for each possible token w .
- Eliminates zero probabilities.
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Problems with Laplace Smoothing

Uniform Distribution for Unobserved Contexts and Over-Smoothing Rare Contexts
• For unobserved (n − 1)-gram contexts c (count(c) = 0), Laplace smoothing assigns:

θ̂Laplace
c,w =

1

|V| ,

resulting in a uniform distribution across the vocabulary.
• This fails to capture any linguistic structure or dependencies in the data.
• For rare contexts (e.g., count(c) = 2), smoothing redistributes too much probability to unseen tokens.

High Sensitivity to Vocabulary Size and Model’s Order
• The denominator (count(c) + |V|) grows with |V|, making the smoothed probabilities heavily dependent on

the vocabulary size.
• As n increases, the number of possible (n − 1)-gram contexts grows exponentially: |V|n−1.

• Even large corpora cannot cover this space, leading to unrealistic distributions for unseen or rare contexts.
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Handling Unknown Words

Out-of-Vocabulary (OOV) Words
• Even large training corpora cannot cover every word form or proper noun.
• Any word ω not observed in training is out-of-vocabulary (OOV).
• Issue: If OOV word appears in testing (or real-world usage), the n-gram model has zero probability for any

sequence containing ω.

<UNK> Token
• A common approach is to preemptively replace low-frequency words in the training data with a special

symbol <UNK>.
• This maps all rare or unobserved words to a single <UNK> token, effectively reducing vocabulary size.
• <UNK> is then treated like any other token in the n-gram model, allowing the model to handle previously

unseen words during inference.

• Threshold Method:
– If count(ω) < τ , replace ω with <UNK> in training.
– Choose τ (e.g., 1, 2, 5) based on data scale and performance.

• Vocabulary Pruning:
– Keep only the top α% most frequent words and map the rest to <UNK>.
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Linear Interpolation of n-gram Models

Motivation
• Pure MLE or simple smoothing (e.g., Laplace) can still suffer from zero probabilities for higher-order

n-grams with low counts.
• Interpolation combines multiple context lengths (orders) rather than “backing off” only when higher-order

counts are insufficient.
• Offers a continuous blend of all available contexts, reducing the abruptness of pure backoff.

General Interpolation Formula (Trigram Example)
Suppose you want to interpolate among unigram (N = 1), bigram (N = 2), and trigram (N = 3) models:

pinterp(wk | wk−2,wk−1) = λ3 pMLE(wk | wk−2,wk−1) + λ2 pMLE(wk | wk−1) + λ1 pMLE(wk),

where:
•
∑3

i=1 λi = 1.
• pMLE(·) are the standard MLE estimates for each context size, can use smoothing.
• {λi} can be tuned on a held-out validation set (e.g., maximize likelihood or minimize perplexity).
• Often, λi depend on context counts so that higher-order models get more weight when data is sufficient.
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Special Tokens: <s> and </s>

Purpose of Special Tokens
• <s>: Marks the start of a sentence.
• </s>: Marks the end of a sentence.

Motivation
• Defining Sentence Boundaries: <s> and </s> provide explicit delimiters for sequences.
• Context Padding for n-Gram Models:

– For n-gram models, prepend (n − 1) ‘<s>‘ tokens to the beginning of a sentence.
– Example (Bigram Model): p(w1,w2,w3) ≈ p(w1 | <s>)p(w2 | w1)p(w3 | w2)p(</s> | w3).

• Termination in Generation: Models recognize </s> as the endpoint for generated sequences, preventing
infinite loops.
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Entropy of a Discrete Distribution I

Intuition
• Entropy measures the average uncertainty or surprise of a random variable.
• In language modeling, it reflects how predictable or unpredictable the tokens are under a distribution.

Formal Definition
Let X be a discrete random variable with a probability mass function p(x) over some set V. The entropy H(X)
is defined as:

H(X) = −
∑
x∈V

p(x) log p(x).

• The base of the logarithm determines the units:
– Base 2: Entropy is measured in bits.
– Base e: Entropy is measured in nats.

• Bits: The number of binary (yes/no) questions needed, on average, to identify an outcome of X .
• High entropy ⇒ high unpredictability; low entropy ⇒ more predictability.
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Entropy of a Discrete Distribution II

Example
• Suppose V = {cat, dog, mouse} with p(cat) = 0.5, p(dog) = 0.3, p(mouse) = 0.2. Then

H(X) = −
[
0.5 log 0.5 + 0.3 log 0.3 + 0.2 log 0.2

]
.

• If base 2, H(X) ≈ 1.485 bits.

Interpreting Binary Questions
• Suppose X represents a random word from {cat, dog, mouse}:
• To identify the outcome of X using yes/no questions:

– Q1: Is it cat? (p(cat) = 0.5) - If yes, stop (probability 0.5). - If no, proceed (probability 0.5).
– Q2: Is it dog? (p(dog) = 0.3) - If yes, stop (probability 0.3). - If no, stop at mouse (probability 0.2).

• Expected Number of Questions:

H(X) ≈ 1.485 bits (on average, slightly fewer than 2 binary questions).
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Cross-Entropy and the Derivation of KL-Divergence I

Cross-Entropy Definition
Let p(x) be the true distribution and q(x) be a model distribution over the same set V. The cross-entropy
H(p, q) is:

H(p, q) = −
∑
x∈V

p(x) log q(x).

• Measures how well the model q “fits” the true data p.
• If q = p, then H(p, q) = H(p), the entropy of p.
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Cross-Entropy and the Derivation of KL-Divergence II

Derivation of KL-Divergence
Starting from the cross-entropy:

H(p, q) = −
∑
x∈V

p(x) log q(x),

we can rewrite:
−
∑
x∈V

p(x) log q(x) = −
∑
x∈V

p(x) log p(x) −
∑
x∈V

p(x) log
(

q(x)
p(x)

)
.

Observe that
log q(x) = log p(x) + log

( q(x)
p(x)
)
.

Therefore,
H(p, q) = −

∑
x∈V

p(x) log p(x)︸ ︷︷ ︸
= H(p)

+
∑
x∈V

p(x) log
(

p(x)
q(x)

)
︸ ︷︷ ︸

= DKL(p ‖ q)

.
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Cross-Entropy and the Derivation of KL-Divergence III

KL-Divergence
We define the Kullback–Leibler (KL) divergence as

DKL(p ‖ q) =
∑
x∈V

p(x) log p(x)
q(x) ≥ 0.

Hence, we obtain the well-known relationship:

H(p, q) = H(p) + DKL(p ‖ q).

• DKL(p ‖ q) = 0 if and only if p = q.
• Minimizing cross-entropy ⇔ Minimizing KL-divergence.
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Using Cross-Entropy for LM Evaluation I

Empirical vs. Model Distribution
• We have a test set of sequences:

Dtest =
{
(w (i)

1 ,w (i)
2 , . . . ,w (i)

n(i))
}M

i=1
.

• Let N =
M∑

i=1

n(i) be the total number of tokens across all sequences.

• The empirical distribution p̂ places probability 1
N on each token w (i)

k in Dtest.
• Our language model is a distribution pθ(wk | w1:k−1) over the next token given its context.
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Using Cross-Entropy for LM Evaluation II

Per-Token Cross-Entropy and Negative Log-Likelihood
• Cross-Entropy:

H
(
p̂, pθ

)
= −

N∑
i=1

1

N log pθ(w (i)),

where each w (i) is treated as an i.i.d. sample from p̂.
• Equivalently,

H(p̂, pθ) = −
1

N

M∑
i=1

n(i)∑
k=1

log
(
pθ(w (i)

k | w
(i)
1:k−1)

)
.

• This per-token cross-entropy is exactly the average negative log-likelihood of the test set under pθ.
• ↓ Lower cross-entropy ⇒ the model assigns higher probability to the observed tokens.
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Perplexity as a Measure of LM Quality

Definition of Perplexity
• Perplexity is an exponentiation of the cross-entropy, providing a more intuitive scale.
• If using natural logs,

PP(pθ) = exp
(

H(p̂, pθ)
)
.

• If using base-2 logs,
PP(pθ) = 2H(p̂,pθ).

Why Perplexity is Intuitive
• Average Branching Factor:

– Imagine each token prediction as choosing among equally likely options.
– Perplexity says “on average, how many distinct choices does the model effectively consider?”
– A perplexity of 1 means the model is never uncertain; larger values indicate greater uncertainty.
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Example: Toy Corpus and Tri-Gram Model Setup I

Corpus & Vocabulary
Toy Corpus D consists of three sentences, each prepended with two <s>:

<s> <s> i love cats </s>
<s> <s> i love dogs </s>
<s> <s> cats chase mice </s>

Vocabulary V: {<s>, i, love, cats, dogs, chase, mice, </s>}.

Trigram Model Assumption
• For each position k, we model pθ(wk | wk−2,wk−1).
• Example: In <s> <s> i love cats </s>, the third token i is predicted by pθ(i | <s>, <s>).
• We will collect all (2-token context, next token) counts from D and apply MLE:

θ̂c,w =
count(c,w)

count(c) .
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Example: Toy Corpus and Tri-Gram Model Setup II

Context-Next Token Counts
Below is a partial table of contexts (c = (wk−2,wk−1)) and how often each next token appears:

Context (wk−2,wk−1) Next Token Count Sum Over Next Toks MLE Probability
(<s>, <s>) i 2 3 2

3
≈ 0.67

(<s>, <s>) cats 1 1
3
≈ 0.33

(<s>, i) love 2 2 2
2
= 1.0

(i, love) cats 1 2 1
2
= 0.5

(i, love) dogs 1 1
2
= 0.5

(love, cats) </s> 1 1 1.0
…

Note: Fill out this table for all observed 2-token contexts in the corpus (omitting zero-count contexts not
observed, or using smoothing).
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Example: Toy Corpus and Tri-Gram Model Setup III

Probability of a New Sentence
Test Sentence: <s> <s> i love mice </s>

• Using chain rule for trigrams:

pθ(<s> <s> i love mice </s>) = pθ(i | <s> <s>)× pθ(love | <s> i)

× pθ(mice | i love)× pθ(</s> | love mice).

• Since pθ(mice | i, love) = 0, then the entire product is zero unless we apply smoothing.

Cross-Entropy & Perplexity Computation
• Let N be total tokens in <s> <s> i love mice </s> (which is 6).
• Per-token cross-entropy = − 1

6

∑5
k=1 log pθ(wk | wk−2,wk−1).

• Perplexity = exp(cross-entropy).
• Example: If pθ

(
mice | i, love

)
= 0, perplexity is infinite.
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Generation Strategies for Language Models I

Decoding Algorithm: Greedy vs. Sampling (with Temperature)
Input:

• Trained language model pθ(wk | w1, . . . ,wk−1). Initial context cinit (e.g., (<s>, <s>) for a trigram model).
• Decoding strategy: choose either greedy or sampling. (Optional) Temperature T for sampling.

Algorithm:
1. Initialize context c ← c init and set sequence ← [].
2. Repeat

2.1 Compute pθ(w | c) for all w ∈ V.
2.2 if strategy is greedy:

w∗ ← arg max
w∈V

pθ(w | c).

2.3 else if strategy is sampling:

w∗ ∼ p(T)
θ (w | c) =

pθ(w | c)1/T∑
w′∈V pθ(w ′ | c)1/T .

2.4 Append w∗ to sequence and update context c.

3. Until w∗ = </s>.
4. Return sequence (optionally excluding special tokens like <s> and </s>).
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Generation Strategies for Language Models II

Greedy vs. Sampling
• Sampling:

– At each step, sample the next token wk from pθ(wk | w1, . . .wk−1).
– Pros: Can produce diverse, creative outputs.
– Cons: May generate nonsensical or low-probability tokens if distribution is broad.

• Greedy Decoding:
– Always pick the token wk with the highest probability arg max pθ(wk | w1, . . .wk−1).
– Pros: Fastest method, easy to implement.
– Cons: Often gets stuck in repetitive or sub-optimal sequences (lack of diversity).

• Temperature Scaling
– Effects of T : T > 1: Flattens the distribution, increasing randomness. T < 1: Sharpens the distribution.
– Pros: Fine-grained control over output randomness.
– Cons: Requires careful tuning of T for desired behavior.

Other Sampling Strategies
• Top-k: Restrict sampling to the k most probable tokens at each step.
• Nucleus (Top-p): Sample from the smallest set of tokens whose cumulative probability exceeds p.
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Generation Strategies for Language Models III

Beam Search Algorithm
Input:

Trained language model pθ(wk | w1, . . . ,wk−1).
Initial context c init (e.g., (<s>, <s>)).
Beam size B (number of parallel hypotheses to maintain) and maximum length L.

Algorithm:
Initialize candidates ← {(c init, 0)}, where each candidate is a tuple of context and log-probability.
Initialize final_sequences ← [].
Repeat:

For each candidate (c, score) in candidates:
Compute pθ(w | c) for all w ∈ V.
Extend c with each w , forming new candidates:
(c + w , score + log pθ(w | c)).

If w = </s>:
Move (c + w , score) to final_sequences.

Retain the top B candidates by score for the next step.
Until: All B candidates end with </s> or maximum length is reached.
Return: The highest-scoring sequence from final_sequences.
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Problems with Categorical n-Gram Parametrization

Exponential Growth of Parameters
• A categorical n-gram model requires a unique parameter θc,w for each context c (of length n − 1) and next

word w . Total number of parameters is exponential in the context length n − 1:

|V| n−1 · (|V| − 1).

Sparsity and Zero Probabilities
• For most possible n-grams, the count count(c,w) ≈ 0, causing θc,w ≈ 0 for many (c,w) if no smoothing is

used to modify the counts.

Lookup Table Representation p(w | c) = θc,w

• Input: Each word in the key n-gram can be seen as a one-hot vector 1w ∈ {0, 1}|V|. The n-gram
(c1, . . . , cn−1,w) can be seen as a concatenation of n one-hot word vectors:

x =
[
1c1 ; . . . ; 1cn−1 ; 1w

]
∈ R|V|·n.

• There is no intrinsic notion of similarity between different contexts in this representation.
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Feed-Forward Neural Network Parametrization

Input Mapping
• Each word w in the context c is mapped to an embedding ew ∈ Rd , with d � |V|.
• Computed by projecting one-hot vectors through an embedding matrix E ∈ R|V|×d : ew = E>1w .

• Embeddings of the n − 1 context words are concatenated

x =
[

ec1 ; . . . ; ecn−1

]
∈ Rd·(n−1).

Hidden Layer

h = tanh
(

W (h)x + b(h)
)
, W (h) ∈ Rm×(d·(n−1)), b(h) ∈ Rm.

• Computes a continuous context embedding h ∈ Rm. Learns to mix features from the word embeddings.

Output Layer

p(w | c) = pw where p ∈ R|V|, p = softmax
(

W (o)h + b(o)
)
, W (o) ∈ R|V|×m, b(o) ∈ R|V|.
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Comparison: Categorical vs. Neural Parametrization I

Parameter Sets
Categorical n-gram:

θcat =
{
θc,w | c ∈ V n−1, w ∈ V

}
Neural LM:

θnn =
{

E ∈ R|V|×d , W (h) ∈ Rm×(d·(n−1)), b(h) ∈ Rm, W (o) ∈ R|V|×m, b(o) ∈ R|V|
}
.

• Here, h ∈ Rm is the hidden context embedding. Neural LM uses far fewer parameters due to sharing across
contexts.
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Comparison: Categorical vs. Neural Parametrization II

Practical Example of Parameter Sizes
Assume a vocabulary size |V| = 10,000, embedding dimension d = 300, hidden layer size m = 500, and n = 3
(trigram).

• Categorical Trigram:

Parameters ≈ |V| 2 · (|V| − 1) ≈ 10,0002 · 9,999 ≈ 1012.

• Neural Trigram:

|V| × d + m × ((n − 1) · d) + m + |V| ×m + |V|
≈ 10,000× 300 + 500× (2× 300) + 500 + 10,000× 500 + 10,000

≈ 3× 106 + 300,000 + 500 + 5× 106 + 10,000

≈ 8.3× 106 parameters.
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Feature Exatraction

Feature Mixing in Hidden Layers

(
· · · W (h)

j,i1︸ ︷︷ ︸
large weight

· · · W (h)
j,i2︸ ︷︷ ︸

large weight

· · ·
)

︸ ︷︷ ︸
row j of W (h)

×



...
xi1︸︷︷︸

dim i1
...

xi2︸︷︷︸
dim i2

...


︸ ︷︷ ︸

x

−→ hj = tanh
( d·(n−1)∑

i=1

W (h)
j,i xi + b(h)

j

)
.

• Each row W (h)
j,· selectively combines specific dimensions of the input x.

• Larger weights
∣∣W (h)

j,i
∣∣ amplify embedding dimensions (e.g., those tied to nouns or adjectives).

• Thus, hj can learn a particular pattern by focusing on relevant parts of x.
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Training a Feed-Forward Neural LM I

Training Corpus and Empirical Distribution
• Let D = {w(i)}N

i=1 be a set of N sentences (or sequences), each w(i) = (w (i)
1 , . . . ,w (i)

Ti
).

• The empirical distribution p̂(w) places probability 1
N on each training sentence w(i).

Cross-Entropy ⇔ Maximum Likelihood
• Our model pθ(w) assigns a probability to any sentence w . Cross-entropy between p̂ and pθ:

H(p̂, pθ) = −
N∑

i=1

1

N log pθ

(
w(i)).

• Minimizing H(p̂, pθ) ⇔ arg max
θ

N∏
i=1

pθ

(
w(i)), i.e. maximum likelihood estimation (MLE).

• This objective is also known as the negative log-likelihood (NLL):

`(θ) = −
N∑

i=1

log pθ

(
w(i)).
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Training a Feed-Forward Neural LM II

Chain Rule and n-grams
• In a feed-forward LM with context size n − 1:

pθ

(
w(i)) = Ti∏

k=1

pθ

(
w (i)

k
∣∣ w (i)

k−n+1, . . . ,w
(i)
k−1

)
.

• Each term pθ(wk | ck) is computed via:

ck 7→ x 7→ h 7→ p = softmax
(
W (o) h + b(o)), pθ(wk | ck) = pwk

.

Loss Over the Entire Corpus

`(θ) = −
N∑

i=1

log pθ

(
w(i)) = −

N∑
i=1

Ti∑
k=1

log pθ

(
w (i)

k | c
(i)
k
)
.

• Minimizing `(θ) sums the negative log-probabilities over all context-target pairs (ck ,wk).
• Single Pair Loss: `(θ; c,w) = − log pθ(w | c).

Nadi Tomeh Generative Models for NLP 24/1/25 54 / 84



Training a Feed-Forward Neural LM III

Parameter Update Rule
• Use gradient-based methods (SGD, Adam, etc.) to update parameters:

θ ← θ − η∇θ `(θ).

• η is the learning rate. In practice, Adam or RMSProp handle adaptive step sizes and momentum.

Forward, Loss, and Backprop
Forward Pass:

x =
[
ewk−n+1 ; . . . ; ewk−1

]
, h = tanh(W (h) x + b(h)), z = W (o) h + b(o), p = softmax(z).

`(θ; c,w) = − log pw .

Backward Pass:
• Derive ∇z` from the softmax derivative, propagate to h and x via chain rule (through tanh, matrix

multiplies).
• Accumulate gradients for W (h), b(h),W (o), b(o), and E (embedding matrix).
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Training a Feed-Forward Neural LM IV

Mini-Batch Training and Vectorization
• Instead of processing one (c,w) at a time, we group examples into mini-batches (e.g., size 32).
• Vectorization:

– Stack the x vectors of multiple examples into a matrix X.
– Compute W (h)X (and subsequent layers) in parallel for the whole batch.

• Average gradients over the mini-batch, then update parameters, resulting in more stable training and GPU
efficiency.
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Detailed Gradient Derivations I

Setup:
`(θ; c,w) = − log pθ(w | c), pθ(w | c) = softmax(z)w , z = W (o) h + b(o),

h = tanh(W (h) x + b(h)), x =
[
ewk−n+1 , . . . , ewk−1

]
.

where p = softmax(z) and y ∈ {0, 1}|V| is the one-hot vector for the correct word w . Then:
1. Gradient w.r.t. output logits z:

∂`

∂zj
=

∂

∂zj

[
− log(pw )

]
= pj − yj (for j = 1, . . . , |V|).

2. Output layer parameters:
∇W (o)` = (p − y) h>, ∇b(o)` = p − y .

3. Hidden layer gradient:
∇h` = (W (o))>(p − y).

Then apply chain rule for tanh:
∇z(h)` =

(
1− tanh2(z(h))

)
� ∇h`,

where z(h) = W (h) x + b(h).
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Detailed Gradient Derivations II

4. Hidden layer parameters:
∇W (h)` = ∇z(h)` x>, ∇b(h)` = ∇z(h)`.

5. Embedding matrix E : Backprop through x (the concatenation of each context word’s embedding). Each
relevant row in E is updated according to ∂`

∂ewi
.

Nadi Tomeh Generative Models for NLP 24/1/25 58 / 84



Outline

• Introduction to Language Models
• Vocabulary and Tokenization
• Applications
• Parametrization and Estimation
• n-Gram Language Models
• Addressing Data Sparsity in n-Gram Models
• Evaluation Metrics for Language Models
• Toy Example
• Generation Strategies for Language Models
• Feed-Forward Neural Language Models
• Training
• Recurrent Neural Networks (RNNs)
• LSTMs and GRUs
• What’s Next?

Nadi Tomeh Generative Models for NLP 24/1/25 59 / 84



Motivation: Moving Beyond Fixed Context Size

Limitations of Feed-Forward LM
• Fixed Window: A feed-forward LM uses a context of size n − 1. Any dependency beyond n − 1 tokens is

not captured.
• Long-Distance Dependencies in Language:

– Example:
The car that I drove yesterday broke down this morning.

The mention of “car” is quite far from the point where we describe what happened to it.

Recurrent Neural Networks (RNNs)
• Designed to capture variable-length contexts and long-distance dependencies by maintaining a hidden state

that updates at each time step.
• The RNN hidden state plays the role of memory, combining information from all previous tokens.
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Elman RNN: Detailed Equations I

Notation and Setup
• Let w = (w1,w2, . . . ,wT ) be a tokenized sequence.
• At each time step t, the RNN processes the embedding xt ∈ Rd of the current token wt .
• Maintains a hidden state ht ∈ Rm capturing all previously seen tokens, thus overcoming the fixed-window

limitation.

Forward Pass of an Elman RNN

ht = tanh
(

W xh xt + W hh ht−1 + bh

)
, h0 = 0 (or learned).

• W xh ∈ Rm×d : transforms current input xt (as in feed-forward LMs).
• W hh ∈ Rm×m: new recurrent connection, combining the previous state ht−1.
• bh ∈ Rm: bias term.
• tanh: typical nonlinear activation; other choices (ReLU, etc.) are possible.
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Elman RNN: Detailed Equations II

Key Difference vs. Feed-Forward LM
• Unlike a feed-forward LM (which sees only a fixed window of size n − 1), the RNN recurrently incorporates

ht−1 through W hh.
• This enables the network to (in principle) use an unbounded context.

Output and Next-Word Distribution

z t = W hy ht + by , p t = softmax(z t), pθ(wt+1 | w1...t) = p t, wt+1
.

• z t ∈ R|V|: output logits for next token at time t.
• p t ∈ R|V|: next-token probability distribution via softmax.
• W hy ∈ R|V|×m, by ∈ R|V|.
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Unrolling RNN in time I

A Diagram

h0 ∈ Rm h1 ∈ Rm h2 ∈ Rm h3 ∈ Rm

x1 ∈ Rd x2 ∈ Rd x3 ∈ Rd

z1 ∈ R|V| z2 ∈ R|V| z3 ∈ R|V|

p1 ∈ [0, 1]|V| p2 ∈ [0, 1]|V| p3 ∈ [0, 1]|V|

W hh W hh W hh

W xh W xh W xh

W hy W hy W hy

softmax softmax softmax

h0 = 0 (or learned)
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Unrolling RNN in time II

In Equations
• For inputs x1, x2, x3, x4, each xt ∈ Rd .
• The hidden state at the final time step (h4 ∈ Rm) unfolds as:

h4 = tanh
(

W hh tanh
(

W hh tanh
(

W hh tanh
(

W hh h0 + W xh x1 + bh
)

+ W xh x2 + bh
)

+ W xh x3 + bh
)

+ W xh x4 + bh
)

• Logits at time step 4 (z4 ∈ R|V|): z4 = W hy h4 + by .

• Notice that h4 depends on h0 and all prior inputs x1, . . . , x4, each influencing the hidden state through
multiple nested tanh transformations.
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Comparison with Feed-Forward LM Architecture

Drawbacks of Feed-Forward LM
• Fixed window: (wk−n+1, . . . ,wk−1)→ concat embeddings→ hidden layer→ softmax(. . . ).
• Limitations:

– Cannot look beyond (n − 1) tokens of context.
– Parameter explosion if n is large.
– No built-in mechanism to capture long-distance or variable-length dependencies.

RNN LM Advantages
• Implicitly unbounded context: ht in principle encodes all previous tokens (w1, . . . ,wt−1).
• Shared parameters over time steps: leads to statistical strength and fewer parameters for large contexts

than a large-window feed-forward LM.
• Recurrent updating: ht evolves recursively, capturing sequential correlations in language.
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Training an RNN LM and Its Challenges I

Objective and Unrolling in Time
• Similar to feed-forward LMs, we define a training set D = {w(i)}N

i=1 of sequences w(i) = (w (i)
1 , . . . ,w (i)

Ti
).

• Our RNN LM factorizes pθ(w) via:

pθ

(
w1, . . . ,wT

)
=

T∏
t=1

pθ

(
wt | w1, . . . ,wt−1

)
.

• Unrolled Computation:
– A hidden state ht ∈ Rm is computed at each time t: ht = f (ht−1, xt)

(
e.g. Elman update with tanh

)
.

– Output logits zt = W hy ht + by , probabilities pt = softmax(zt).
• Loss over entire sequence:

`(θ;w) = −
T∑

t=1

log pθ(wt | w1:t−1).
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Training an RNN LM and Its Challenges II

Backprop Through Time (BPTT)
• We sum (or average) over all time steps and all sequences:

`(θ) =
N∑

i=1

Ti∑
t=1

− log pθ

(
w (i)

t | w (i)
1:t−1

)
.

• Gradient Computation:
– We unroll the RNN across time steps 1 . . .T .
– Apply backprop to each unrolled connection, known as BPTT.
– Accumulate gradients ∇W xh ,∇W hh ,∇W hy , . . ..

• Parameter Updates:
θ ← θ − η∇θ `(θ),

typically in mini-batches for efficiency.
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Training an RNN LM and Its Challenges III

Challenges: Vanishing/Exploding Gradients
• Vanishing Gradients:

– When ‖W hh‖ < 1, backprop terms can decay exponentially over many steps.
– The model struggles to learn long-term dependencies.

• Exploding Gradients:
– When ‖W hh‖ > 1, gradients can grow exponentially, causing instability.
– Common solutions: gradient clipping, careful initialization.

• Both issues arise because gradients repeatedly multiply through W hh across time.
• Recurrent Architectures (LSTM/GRU) partially address these challenges with gating.
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Detailed Gradients for one sequence: ∇ht `(θ;w)

Goal: Gradient w.r.t. Hidden State
• Let us call L = `(θ;w) = −

∑T
t=1 log pθ(wt | w1:t−1).

• We want ∂L
∂ht

, the gradient of the total sequence loss L wrt. the hidden state ht :

∂L
∂ht

=
∂Lt

∂ht
+

∂Lt+1

∂ht
+ . . . +

∂LT

∂ht
.

• Summing direct and indirect contributions:

∂L
∂ht

=
∂Lt

∂ht︸︷︷︸
direct from step t

+
T∑

k=t+1

∂Lk

∂ht︸︷︷︸
indirect from future steps k>t

=
∂Lt

∂ht
+

T∑
k=t+1

∂Lk

∂ht+1

∂ht+1

∂ht
.

• Often simplified as a recursive formula:

∂L
∂ht

=
∂Lt

∂ht
+

∂L
∂ht+1

∂ht+1

∂ht
.
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Computing the Recursive Gradient I

Hidden State Update
• Recall the simple Elman RNN:

ht+1 = tanh(at+1), at+1 = W hh ht + W xh xt+1 + bh.

• We compute:
∂ht+1

∂ht
=

∂ht+1

∂at+1︸ ︷︷ ︸
diag(1−tanh2(at+1))

· ∂at+1

∂ht︸ ︷︷ ︸
W hh

.
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Computing the Recursive Gradient II

Chain Rule in Detail
• Since ht+1 = tanh(at+1) and W xh xt+1 and bh are constants wrt. ht :

∂ht+1

∂at+1
= diag

(
1− tanh2(at+1)

)
,

∂at+1

∂ht
= W hh

• Combine:
∂ht+1

∂ht
= diag

(
1− tanh2(at+1)

)
W hh.

• Then the gradient update:
∂L
∂ht

=
∂Lt

∂ht
+

∂L
∂ht+1

∂ht+1

∂ht
.

=
∂Lt

∂ht
+

∂L
∂ht+1

diag(1− tanh2(at+1))W hh.

• Adjust for shape (often a transpose factor). Final form:

∂L
∂ht

=
∂Lt

∂ht
+ W>

hh

[
diag

(
1− tanh2(at+1)

) ∂L
∂ht+1

]
.
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Unrolling the Recursion

Repeated Application
• Applying the recurrence from t to t + 1, t + 2, etc. yields:

∂L
∂ht

=
∂Lt

∂ht
+ W>

hhΦ
′
t+1

∂L
∂ht+1

=
∂Lt

∂ht
+ W>

hhΦ
′
t+1

(
∂Lt+1

∂ht+1
+ W>

hhΦ
′
t+2

∂L
∂ht+2

)
...

=

T∑
k=t

(( k∏
j=t+1

W>
hhΦ

′
j

)
∂Lk

∂hk

)

• Φ′
j denotes diag(1− tanh2(a j)).

• This product across many steps can vanish if ‖W hh‖ < 1 or explode if ‖W hh‖ > 1.
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Vanishing & Exploding Gradients (Recap)

Vanishing Gradients
• If ‖W hh‖2 < 1, repeated multiplication shrinks gradients exponentially with distance:∥∥∥ ∂L

∂ht

∥∥∥ ≤ (
‖W hh‖2 γ

)(k−t)
∥∥∥ ∂Lk

∂hk

∥∥∥.
• Hard to learn long-term dependencies.

Exploding Gradients
• If ‖W hh‖2 > 1, norms can blow up: ∥∥∥ ∂L

∂ht

∥∥∥ ≥ (
‖W hh‖2 γ

)(k−t)
∥∥∥ ∂Lk

∂hk

∥∥∥.
• Causes numerical instability; we often do gradient clipping.
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Mitigating Gradient Problems

Common Strategies
• Gradient Clipping:

– Restricts the norm ‖∇θ`‖ to a predefined threshold.
– Prevents numeric overflow when gradients become large (exploding gradients).

• Initialization Techniques:
– Properly initializing W hh,W xh etc. to maintain stable gradient propagation.
– Use orthogonal or unitary matrices for W hh, e.g. W hh W>

hh = I.
· Preserves the norm: ‖W hh x‖ = ‖x‖.
· Helps combat vanishing/exploding gradients.

• Activation Functions:
– ReLU or similar (e.g. Leaky ReLU) can reduce gradient decay compared to tanh.
– For instance, ReLU(x) = max(0, x), derivative is 1 for x > 0, allowing large gradient flow.

• Advanced RNN Architectures:
– LSTM Introduces a cell state and gating mechanisms to preserve long-term information.
– GRU A simpler variant of LSTM, also addresses gradient issues through gating.
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Outline

• Introduction to Language Models
• Vocabulary and Tokenization
• Applications
• Parametrization and Estimation
• n-Gram Language Models
• Addressing Data Sparsity in n-Gram Models
• Evaluation Metrics for Language Models
• Toy Example
• Generation Strategies for Language Models
• Feed-Forward Neural Language Models
• Training
• Recurrent Neural Networks (RNNs)
• LSTMs and GRUs
• What’s Next?
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LSTM Architecture: Scalar and Vector Forms I

Scalar Equations (Conceptual)
• For each time t, an LSTM maintains ct (the cell state) and ht (the hidden state).
• Example (scalar version):

ct = ft · ct−1 + it · zt , cell state
ht = ot ψ(ct), hidden output

zt = ϕ(z̃t), z̃t = w>
z xt + rz ht−1 + bz ,

it = σ(̃it), ĩt = w>
i xt + ri ht−1 + bi ,

ft = σ(f̃t), f̃t = w>
f xt + rf ht−1 + bf ,

ot = σ(õt), õt = w>
o xt + ro ht−1 + bo .

• σ is the logistic sigmoid, ϕ could be tanh. This form highlights the gating logic: it (input gate), ft (forget
gate), and ot (output gate).
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LSTM Architecture: Scalar and Vector Forms II

Vector Form (Practical Implementation)
• In practice, we combine scalar gates into vector/matrix operations. For each time t:

ct = ft � ct−1 + it � zt , ht = ot � ψ(ct),

zt = ϕ
(
Wz xt + Rz ht−1 + bz

)
,

it = σ
(
Wi xt + Ri ht−1 + bi

)
,

ft = σ
(
Wf xt + Rf ht−1 + bf

)
,

ot = σ
(
Wo xt + Ro ht−1 + bo

)
.

• xt ∈ Rd , ht , ct ∈ Rm.

• W∗ ∈ Rm×d , R∗ ∈ Rm×m, b∗ ∈ Rm.

• Each gate it , ft , ot ∈ Rm controls how info flows in/out of the cell state ct .
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Illustration of an LSTM Cell Structure

σ σ tanh σ

× +

× ×

tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht
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How the LSTM’s Constant Error Carousel (CEC) Addresses Vanishing Gradients I

Constant Error Carousel in LSTM
• The key update rule in LSTMs for the cell state ct ∈ Rm:

ct = ft � ct−1 + it � zt ,

where � is element-wise multiplication.
– Additive updates (rather than purely multiplicative) avoid exponential shrinking of gradients.
– Each component ft , it , zt is computed via gates (e.g. σ or tanh).
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How the LSTM’s Constant Error Carousel (CEC) Addresses Vanishing Gradients II

Gradient Flow Through CEC
• Recursive Gradient Equation:

∂L
∂ct

=
∂Lt

∂ct
+

(
∂L
∂ct+1

� ft+1

)
.

• Unrolling the Recursion:

∂L
∂ct

=
∂Lt

∂ct
+
[ ∂Lt+1

∂ct+1
+
( ∂L
∂ct+2

� ft+2

)]
� ft+1

=
∂Lt

∂ct
+
(∂Lt+1

∂ct+1
� ft+1

)
+
( ∂L
∂ct+2

� ft+2 � ft+1

)
+ . . .

=

T∑
k=t

( ∂Lk

∂ck
�

k∏
j=t+1

fj

)
.

• Each term is modulated by the product of forget gates fj ∈ [0, 1]m, which can preserve gradient flow if
fj ≈ 1. This prevents the exponential decay of gradients, thus solving the vanishing gradient problem.
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Gated Recurrent Units (GRUs)

Motivation
• Simplify the LSTM architecture: Reduce the number of gates and parameters while still addressing

vanishing gradients.
• Combine Forget and Input gates into a single update gate to decide how much past information to keep

or overwrite.
• Often yields comparable performance to LSTM with a simpler structure and sometimes trains faster.

Key Differences from LSTM
• No separate cell state ct . GRU keeps a single hidden state vector ht .
• Two main gates:

– zt (update gate): controls how much of the previous hidden state to retain.
– r t (reset gate): decides how strongly to forget the old hidden state.

• Fewer parameters than LSTM, potentially faster convergence.
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GRU Architecture I

Gate Definitions

z t = σ
(

W z xt + R z ht−1 + bz

)
(update gate),

r t = σ
(

W r xt + R r ht−1 + b r

)
(reset gate).

h̃t = tanh
(

W h xt + Rh
(
r t � ht−1

)
+ bh

)
,

ht = (1− z t) � h̃t + z t � ht−1.

• z t blends old vs. new information: when z t ≈ 1, we preserve more of ht−1.
• r t gates how much of ht−1 is used in creating h̃t .

Parameter Shapes
• W ∗ ∈ Rm×d , R∗ ∈ Rm×m, b∗ ∈ Rm.
• Each gate has its own W ∗,R∗, b∗, e.g. W z ,W r ,W h,R z ,R r ,Rh.
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• Evaluation Metrics for Language Models
• Toy Example
• Generation Strategies for Language Models
• Feed-Forward Neural Language Models
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• Recurrent Neural Networks (RNNs)
• LSTMs and GRUs
• What’s Next?
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Next Lecture: Attention and Transformer models

Attention Mechanisms
• Purpose: Enable models to dynamically focus

on relevant parts of the input.
• Types of Attention:

– Additive (Bahdanau) Attention
– Multiplicative (Dot-Product) Attention
– Scaled Dot-Product Attention

• Key Equation:

Attention(Q,K ,V ) = softmax
(

QK>
√

dk

)
V

• Applications: Machine translation, text
summarization, question answering.

Transformer Architectures
• Core Components:

– Encoder-Decoder Structure
– Multi-Head Self-Attention
– Position-wise Feed-Forward Networks
– Positional Encoding

• Multi-Head Attention:

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)W O

where headi = Attention(QW Q
i ,KW K

i ,VW V
i )

• Advantages:
– Parallelization over sequence length
– Captures long-range dependencies effectively
– Scalable to large datasets and models

• Impact: Foundation for state-of-the-art models like
BERT, GPT, and more.
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