
Generative Models for NLP
Reinforcement Learning for Human Feedback

Joseph Le Roux

January 9, 2026

Joseph Le Roux Generative Models for NLP January 9, 2026 1 / 36

Outline

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 2 / 36

DATE: 30/12/25

Joseph Le Roux Generative Models for NLP January 9, 2026 3 / 36

#+ENDSRC

Topic

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 3 / 36

Recap

So far we have seeen:
1. How word (token) vectors are the basis of text representation;

2. How Language Models can generate texts fluently

3. How Transformers have become the ubiquitous neural architectures for LMs

Today
How we can further train a LM to generate

• not only fluent texts

• but also useful texts given a task or a context

Using techniques from Reinforcement learning (1) (4)

Joseph Le Roux Generative Models for NLP January 9, 2026 4 / 36

LMs for interactions
We can use LMs to reply to a request by generating from a prompt (see previous lab session)

A probabilistic model for question answering
Given a prompt x (question, instruction. . .) we can generate a reply y by sampling the
conditional distribution:

p(y |x) =
p(x , y)
p(x)

where x , y is the sequence of x concatenated with y (usually with separator token <SEP> in
between)

With LMs
So in practice we want to learn to predict sequences x <SEP> y where:

• x is fixed and is a typical question, and y is the correct answer

We can use a LM for that, trained with cross-entropy per word as before

Issues
• We do not have the correct answers y∗ for all questions

• More imporantly, are all replies different from y∗ equally bad?

• ⇒ supervised learning will not work at scaleJoseph Le Roux Generative Models for NLP January 9, 2026 5 / 36

A Typical Architecture for LM Post-training (1)
Goal: Align output with user’s expectation

1/ Supervised Fine-Tuning
• Next-word prediction on a corpus of texts similar to target texts;

• Usually from human-generated responses (eg Text + summary created by humans)

• Model called πSFT

2/ Collect Preference pairs and train an Reward Model
• With SFT (or another model) generate responses y1 . . . yn for prompt x

• For each pair of responses,

1. ask a (human) labeler their preference;
2. create a corpus of triplets (x , yc , yr).

• Train a model Rφ to attribute a score to responses to reflect preferences

3/ Train a Policy based on the Reward Model
• initialized as πSFT

• use Reinforcement Learning or Direct Policy Optimization
Joseph Le Roux Generative Models for NLP January 9, 2026 6 / 36

A Typical Architecture for LM Post-training (2)

Example: Learn to generate summaries (2)

Joseph Le Roux Generative Models for NLP January 9, 2026 7 / 36

Topic

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 8 / 36

Why we need more than just cross-entropy ?

Pros of Cross-entropy Loss
• supervised, self-supervised

• easy to implement

• generates fluent texts (no grammatical errors)

• trained to generate one correct solution

Cons of Cross-Entropy Loss
• works at the word level, not at the text level

• not possible to grade answers

• not possible to add soft preferences

Joseph Le Roux Generative Models for NLP January 9, 2026 9 / 36

Why Reinforcement Learning (Limits of cross-entropy)

RLHF is one component of post-training.
Post-training is a more complete set of techniques and best-practices to make language models
more useful for downstream tasks

RL
• works at the level of sequences

• grades different replies via a reward function

• explore the search space enough to improve the current model

Challenges of RL for text generation
• we do not know the reward function

• we do not want to lose fluency

Joseph Le Roux Generative Models for NLP January 9, 2026 10 / 36

Reinforcement Learning

Agent-Environnement Model
At each time t:

• the agent witnesses the environment
. . .

• . . . which is in state st .

• The agent performs an action at. . .

• . . . which transforms the environment
to state st+1 and gives reward rt+1,
and so on. . .

Definitions
1. The agent will generate trajectories from initial state s0:

– s0, a0, r0, s1, a1, r2, s2, . . . rT−1sT

2. The function in charge of choosing actions is called the policy π

For LMs
• si corresponds to the position i in the reply y

• ai corresponds to chosing to output the word for position i in reply yJoseph Le Roux Generative Models for NLP January 9, 2026 11 / 36

Reinforcement Learning (1)

We want to generate trajectories that earn rewards
• from s0 (initial state, prompt)

• choose actions (choose words for the reply) from policy πθ

• so that the sum of all rewards is maximum

A probabilistic variant: stochastic policy
• do not choose actions, but rather sample

• we need to parametrize a distribution πθ over actions

• to maximize the expected sum of rewards

RL Objective for each example

max
θ

J(θ) = Eτ∼πθ [G(τ)] = Eτ∼πθ [

T−1∑
t=0

rt]

• s0 corresponds to the prompt for the current example, rt is the reward received after the tth

action (word)

Joseph Le Roux Generative Models for NLP January 9, 2026 12 / 36

Reinforcement Learning (2)

Probability of a trajectory = Probability of a LM
In our case, the only source of stochasticity is the sampling of each word with policy πθ

p(s0, a0, r1, . . . , sT , rT) = p(s0)× p(a0, r0, . . . , rT−1, sT |s0) = p(a0, r0, . . . , rT−1, sT |s0)
= p(a0|s0)× p(r0, . . . , rT−1, sT |s0, a0)
= πθ(a0|s0)× p(r0, . . . , rT−1, sT |s0, a0)
= πθ(a0|s0)× p(r0|s0, a0)× p(s1, . . . , rT−1, sT |s0, a0, r0)
= πθ(a0|s0)× p(s0, . . . , rT−1, sT |s0, a0)
= πθ(a0|s0)× p(s0|s0, a0)× p(a1, . . . , rT−1, sT |s0, a0, s1)
= πθ(a0|s0)× p(a1, . . . , rT−1, sT |s0, a0, s1)
= πθ(a0|s0)× p(a1, . . . , rT−1, sT |s1)
= . . .

=

T−1∏
t=0

πθ(at |st)

In our case, the probability of a trajectory is the probability
∏

πθ(yi |y<i) = p(y): a LM !!

Joseph Le Roux Generative Models for NLP January 9, 2026 13 / 36

Reinforcement Learning (3)

Learn with neural network to parameterize πθ by gradient descent.

∇J(θ) = ∇Eτ∼π [G(τ)] where G(τ) =
∑

t
rt in τ

= ∇
∑
τ

p(τ)G(τ) (def. expectation)

=
∑
τ

∇p(τ)G(τ) (gradient ↔ sum)

=
∑
τ

G(τ)∇p(τ) (gain is constant)

=
∑
τ

p(τ)
p(τ)

G(τ)∇p(τ) (multiply by one)

=
∑
τ

p(τ)G(τ)
∇p(τ)
p(τ)

(rearrange)

=
∑
τ

p(τ)G(τ)∇ log p(τ) (log trick)

∇J(θ) = Eτ∼π [G(τ)∇ log p(τ)] (def. expectation)

Joseph Le Roux Generative Models for NLP January 9, 2026 14 / 36

Reinforcement Learning (4)

Learn with neural network to parameterize πθ by gradient descent.

∇J(w) = Eτ∼π [G(τ)∇ log(p(τ))]

= Eτ∼π [G(τ)
(T−1∑

i=0

∇ logπ(ai |si)
)
]

−→ ∇J(w) ≡ Log-likelihood gradient multiplied by G !!

REINFORCE algorithm (5)
While True:

• Sample τ (generate a reply) with the current model with parameters θ

• Compute G(τ)

• Sum log-likelihood losses for all actions in τ multiplied by G(τ)

(can sample multiple τ and average)

Joseph Le Roux Generative Models for NLP January 9, 2026 15 / 36

Reinforcement Learning (5)

Variance Reduction
• Sampling from the model (MC methods) usually exhibits large variance

• Use a baseline that compare G(τ) with others

REINFORCE with Leave-One-Out Baseline (RLOO)
While True:

• Sample τ1 . . . τK (generate K replies) with the current model with parameters θ

• Compute G(τ1) . . .G(τK)

• Optimize θ with the gradient of:

1

K

K∑
k=1

(
G(τk)−

1

K − 1

∑
k′ 6=k

G(τk′
)
)(Tk−1∑

i=0

logπ(ak
i |sk

i)
)

Joseph Le Roux Generative Models for NLP January 9, 2026 16 / 36

Topic

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 17 / 36

Types of Preferences

Preference Data DPREF
a collection of triplets (x , yc , yr)

• x the prompt (more generally the context);

• yc the preferred (chosen) the response;

• yr the rejected response.

yc is not the best response, simply a better one than yr

Extensions
Optionally, human labelers can add scores or features to responses. We will ignore this in the
following

Joseph Le Roux Generative Models for NLP January 9, 2026 18 / 36

Learning the Reward Function (1)

Bradley-Terry Model
A BT model of preferences is a model that verifies, for each pair of events i , j:

p(i > j) =
p(i)

p(i) + P(j)
where i > j means that i is preferred to j

Build a BT model from rewards
• Let us define a neural network rφ (LSTM/Transformer. . .) that given a sequence "x SEP y"

assign a reward score of y as a response to x ;

• We write this score rφ(y);

• We can define a probability p(y) = exp rφ(y)∑′
y exp rφ(y′)

We want to maximize that p(rφ(yc) > rφ(yr):

Joseph Le Roux Generative Models for NLP January 9, 2026 19 / 36

Learning the Reward Function (2)

Build a BT model from rewards
We want to maximize that p(rφ(yc) > rφ(yr):

p(rφ(yc) > rφ(yr) =
p(yc)

p(yc) + p(yr)

=

exp rφ(yc)
Z

exp rφ(yc)
Z +

exp rφ(yr)
Z

=
exp rφ(yc)

exp rφ(yc) + exp rφ(yr)

Joseph Le Roux Generative Models for NLP January 9, 2026 20 / 36

Learning the Reward Function (3)

Build a BT model from rewards
We want to maximize that p(rφ(yc) > rφ(yr): Equivalently, we want to minimize, by gradient
descent:

− log
exp rφ(yc)

exp rφ(yc) + exp rφ(yr)
= − log

1

1 + exp(rφ(yr)− rφ(yc))

= − log
1

1 + exp(rφ(yr)− rφ(yc))

= − log 1 + log(1 + exp(rφ(yr)− rφ(yc)))

L(φ) = log(1 + exp(rφ(yr)− rφ(yc)))

Reward Model training
1. Architecture:

– Usually a simple linear level h × 1 from the CLS/EOS token of the SFT Transformer LM

2. Training

– Usually just a few epochs (1?)

Joseph Le Roux Generative Models for NLP January 9, 2026 21 / 36

Topic

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 22 / 36

Policy Learning : Regularization

Issues with the reward model
• usually yr and yc are generated by models trained with next-word prediction: very fluent

• the reward does not take fluency into account

• maximizing the expected reward results in non-fluent models

Use Regularization
• we want the final model to be close to SFT, so fluency remains.

• use a notion of close adapted for distributions: Kullback-Leibler divergence

DKL(PRL||QSFT) =
∑

y
PRL(y) log(

PRL(y)
QSFT (y)

)

= Ey∼PRL(·)[log PRL(y)− log QSFT (y)]

We can approximate this loss by sampling y from the current model.

Joseph Le Roux Generative Models for NLP January 9, 2026 23 / 36

Policy Learning : Reinforce

REINFORCE with reward from the RM with regularization
Maximize for each example

J(θ) =
1

K

K∑
k=1

R(yk)
T k∑
i=1

logπθ(yk
i |yk

<i)

where R is the RLOO reward with RM and regularization:

R(yk) = rφ(yk)−
1

K − 1
(
∑
k′ 6=k

rφ(k′))− λREG(
∑

i
(logπθ(yk

i |yk
<i)− logπSFT(yk

i |yk
<i)))

Joseph Le Roux Generative Models for NLP January 9, 2026 24 / 36

Policy Learning: Proximal Policy Optimization (PPO) (1)

Another way to implement a policy gradient algorithm:
Define how much an action is better than another one on average A(s, a):

state value Vπ(s) = E[
∑T

k=0 rt+k |s]

state-action value Qπ(s, a)E[
∑T

k=0 rt+k |s, a]

advantage Aπ(s, a) = Qπ(s, a)− Vπ(s)

Find new policy with better advantage than previous policy

J(θ) =
1

T
∑

i

πθ(ai |si)

πold(ai |si)
Aπold (si , ai)

Joseph Le Roux Generative Models for NLP January 9, 2026 25 / 36

Policy Learning: Proximal Policy Optimization (PPO) (2)

Issue with PPO: objective very unstable: big changes in θ, difficult to find an optimum

Use a clipped variant (Trust Region Optimization)

JCLIP(θ) =
1

T
∑

i
min[

πθ(ai |si)

πold(ai |si)
Aπold (si , ai), g(ε,Aπold (si , ai))]

where

g(ε,A) =

{
(1 + ε)A if A > 0

(1− ε)A otherwise.

This means that if πθ(ai |si)
πold(ai |si)

must be close to 1 otherwhise the gradient is null and there is no
update.

Joseph Le Roux Generative Models for NLP January 9, 2026 26 / 36

Policy Learning: Proximal Policy Optimization (PPO) (3)

How to compute A in practice?
• Q(si , ai) is approximated by the sum of rewards to go

Q(si , ai) =
T∑

t=i
rt

• V (si) is approximated by a neural network vφ

– typically a linear layer above the Transformer vector of wi

– trained with the LM, by mean-squared error

Add entropic regularisation on πθ

discourage predicting too few actions per state

• H(πθ(·|s)) = −
∑

a πθ(a|s) logπθ(a|s)

Final PPO objective:

JCLIP(θ) +
T−1∑
i=0

λ1H(πθ(·|si)) +
λ2

2
((

T−1∑
j=i

rj)− vφ(si))
2

Joseph Le Roux Generative Models for NLP January 9, 2026 27 / 36

Topic

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 28 / 36

Direct Policy Optimization (1)

Do we need really need reinforcement learning?
• We use RL because we want to incorporate a reward score (not simply 0/1 scores)

• but using full RL with a MDP formulation of LM. . . is maybe too much?

Can we take into account preferences (x , yc , yr) directly?
• Direct Alignment algorithms

• Link to the paper (3)

Joseph Le Roux Generative Models for NLP January 9, 2026 29 / 36

Direct Policy Optimization (2)

Start with the RL Objective with Regularization

argmax
θ

Eτ∼πθ [G(τ)]− βREG(θ)

• Recall what the probability of a trajectory/response is:
πθ(τ) =

∏
(si ,ai)∈τ πθ(ai |si)

• G(τ) is the sum of rewards for trajectory τ (with possibly RLOO baseline)

RL objective with KL regularization

argmax
θ

Eτ∼πθ [G(τ)]− βEτ∼πθ [log
πθ(τ)

πSFT (τ)
] = argmax

θ
Eτ∼πθ [G(τ)− β log

πθ(τ)

πSFT (τ)
]

We would like to see this as a KL divergence between πθ and . . . something easy to compute!

Joseph Le Roux Generative Models for NLP January 9, 2026 30 / 36

Direct Policy Optimization (3)

DPO as minimizing KL divergence

argmax
θ

Eτ∼πθ [G(τ)− β log
πθ(τ)

πSFT (τ)
]

= argmax
θ

Eτ∼πθ [
1

β
G(τ)− log

πθ(τ)

πSFT (τ)
]

= argmax
θ

Eτ∼πθ [log exp
1

β
G(τ)− log

πθ(τ)

πSFT (τ)
]

= argmin
θ

Eτ∼πθ [log
πθ(τ)

πSFT (τ)
− log exp

1

β
G(τ)]

= argmin
θ

Eτ∼πθ [log
πθ(τ)

πSFT (τ)× exp 1
β

G(τ)
]

= argmin
θ

Eτ∼πθ [log
πθ(τ)

g̃(τ)
] with g̃(τ) = πSFT (τ)× exp

1

β
G(τ)

Almost there. . . but g̃ is not a proper distribution (does not sum to 1)

Joseph Le Roux Generative Models for NLP January 9, 2026 31 / 36

Direct Policy Optimization (4)

From our objective

argmin
θ

Eτ∼πθ [log
πθ(τ)

g̃(τ)
] with g̃(τ) = πSFT (τ)× exp

1

β
G(τ)

Let us define a normalization for g̃ : z =
∑

τ ′ g̃(τ ′)
Note that g(τ) = g̃(τ)

z is a proper distributiuon (positive, sum to one)

We get a KL minimization

argmin
θ

Eτ∼πθ [log
πθ(τ)

g̃(τ)
] = argmin

θ
Eτ∼πθ [log

πθ(τ)

g̃(τ)
+ log z]

= argmin
θ

Eτ∼πθ [log
πθ(τ)× z

g̃(τ)
]

= argmin
θ

Eτ∼πθ [log
πθ(τ)
g̃(τ)

z

] = argmin
θ

Eτ∼πθ [log
πθ(τ)

g(τ)
]

We finally have a KL minimization!

Joseph Le Roux Generative Models for NLP January 9, 2026 32 / 36

Direct Policy Optimization (5)

What is good about KL minimization
• KL is minimized when the two distribution are equal

• We have the solution of our problem: πθ(τ) = g(τ)

But . . .
• in practice z (hence r) is not tractable

• G still depends on training a reward model: not very convenient

We can express the sum of reward G from π:

πθ(τ) = g(τ) ⇔ πθ(τ) =
πREF (τ)× exp 1

β
G(τ)

z

⇔
πθ(τ)× z
πREF (τ)

= exp
1

β
G(τ)

⇔ exp
1

β
G(τ) =

πθ(τ)× z
πREF (τ)

⇔
1

β
G(τ) = log

πθ(τ)× z
πREF (τ)

⇔ G(τ) = β log
πθ(τ)× z
πREF (τ)

⇔ G(τ) = β log
πθ(τ)

πREF (τ)
+ log z

Joseph Le Roux Generative Models for NLP January 9, 2026 33 / 36

Solution: From MLE/KL to Contrastive (back to word2vec?)

Recall the preference model probability, and use our definition of G:

p(yc > yr) =
exp G(yc)

exp G(yc) + exp G(yr)

=
1

1 + exp(G(yr)− G(yc))

= σ(G(yc)− G(yr))

= σ(β log
πθ(yc)

πREF (yc)
+ log z − β log

πθ(yr)

πREF (yr)
− log z)

= σ(β log
πθ(yc)

πREF (yc)
− β log

πθ(yr)

πREF (yr)
)

We can express the probability wtithout explicitly use a reward! We can train from preferences
directly

Training
For each triplet (x , yc , yr)

• update θ with the gradient of L(θ; x , yc , yr) = logσ(β log πθ(yc)
πREF (yc)

− β log πθ(yr)
πREF (yr)

)

Joseph Le Roux Generative Models for NLP January 9, 2026 34 / 36

Topic

• Introduction

• Reinforcement Learning (from Human Feedback) for Generation

• Learning a Reward Function

• Online Policy Learning for Generation

• Offline Policy: DPO

• Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 35 / 36

Bibliography

Nathan Lambert (2024). Reinforcement Learning from Human Feedback, Online.
Nisan Stiennon and Long Ouyang and Jeff Wu and Daniel M. Ziegler and Ryan Lowe and Chelsea
Voss and Alec Radford and Dario Amodei and Paul F. Christiano (2020). Learning to summarize
from human feedback, CoRR.
Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D Manning and Stefano
Ermon and Chelsea Finn (2023). Direct Preference Optimization: Your Language Model is
Secretly a Reward Model.
Sutton, Richard S. and Barto, Andrew G. (2018). Reinforcement Learning: An Introduction, The
MIT Press.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Machine Learning.

Joseph Le Roux Generative Models for NLP January 9, 2026 36 / 36

	Introduction
	Reinforcement Learning (from Human Feedback) for Generation
	Learning a Reward Function
	Online Policy Learning for Generation
	Offline Policy: DPO
	Conclusion

