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Recap

So far we have seeen:
1. How word (token) vectors are the basis of text representation;

2. How Language Models can generate texts fluently

3. How Transformers have become the ubiquitous neural architectures for LMs

Today
How we can further train a LM to generate

• not only fluent texts

• but also useful texts given a task or a context

Using techniques from Reinforcement learning (1) (4)
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LMs for interactions
We can use LMs to reply to a request by generating from a prompt (see previous lab session)

A probabilistic model for question answering
Given a prompt x (question, instruction. . . ) we can generate a reply y by sampling the
conditional distribution:

p(y |x) =
p(x , y)
p(x)

where x , y is the sequence of x concatenated with y (usually with separator token <SEP> in
between)

With LMs
So in practice we want to learn to predict sequences x <SEP> y where:

• x is fixed and is a typical question, and y is the correct answer

We can use a LM for that, trained with cross-entropy per word as before

Issues
• We do not have the correct answers y∗ for all questions

• More imporantly, are all replies different from y∗ equally bad?

• ⇒ supervised learning will not work at scaleJoseph Le Roux Generative Models for NLP January 9, 2026 5 / 36



A Typical Architecture for LM Post-training (1)
Goal: Align output with user’s expectation

1/ Supervised Fine-Tuning
• Next-word prediction on a corpus of texts similar to target texts;

• Usually from human-generated responses (eg Text + summary created by humans)

• Model called πSFT

2/ Collect Preference pairs and train an Reward Model
• With SFT (or another model) generate responses y1 . . . yn for prompt x

• For each pair of responses,

1. ask a (human) labeler their preference;
2. create a corpus of triplets (x , yc , yr ).

• Train a model Rφ to attribute a score to responses to reflect preferences

3/ Train a Policy based on the Reward Model
• initialized as πSFT

• use Reinforcement Learning or Direct Policy Optimization
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A Typical Architecture for LM Post-training (2)

Example: Learn to generate summaries (2)
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Why we need more than just cross-entropy ?

Pros of Cross-entropy Loss
• supervised, self-supervised

• easy to implement

• generates fluent texts (no grammatical errors)

• trained to generate one correct solution

Cons of Cross-Entropy Loss
• works at the word level, not at the text level

• not possible to grade answers

• not possible to add soft preferences
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Why Reinforcement Learning (Limits of cross-entropy)

RLHF is one component of post-training.
Post-training is a more complete set of techniques and best-practices to make language models
more useful for downstream tasks

RL
• works at the level of sequences

• grades different replies via a reward function

• explore the search space enough to improve the current model

Challenges of RL for text generation
• we do not know the reward function

• we do not want to lose fluency
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Reinforcement Learning

Agent-Environnement Model
At each time t:

• the agent witnesses the environment
. . .

• . . . which is in state st .

• The agent performs an action $at$. . .

• . . . which transforms the environment
to state st+1 and gives reward rt+1,
and so on. . .

Definitions
1. The agent will generate trajectories from initial state s0:

– s0, a0, r0, s1, a1, r2, s2, . . . rT−1sT

2. The function in charge of choosing actions is called the policy π

For LMs
• si corresponds to the position i in the reply y

• ai corresponds to chosing to output the word for position i in reply yJoseph Le Roux Generative Models for NLP January 9, 2026 11 / 36



Reinforcement Learning (1)

We want to generate trajectories that earn rewards
• from s0 (initial state, prompt)

• choose actions (choose words for the reply) from policy πθ

• so that the sum of all rewards is maximum

A probabilistic variant: stochastic policy
• do not choose actions, but rather sample

• we need to parametrize a distribution πθ over actions

• to maximize the expected sum of rewards

RL Objective for each example

max
θ

J(θ) = Eτ∼πθ [G(τ)] = Eτ∼πθ [

T−1∑
t=0

rt ]

• s0 corresponds to the prompt for the current example, rt is the reward received after the tth

action (word)
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Reinforcement Learning (2)

Probability of a trajectory = Probability of a LM
In our case, the only source of stochasticity is the sampling of each word with policy πθ

p(s0, a0, r1, . . . , sT , rT ) = p(s0)× p(a0, r0, . . . , rT−1, sT |s0) = p(a0, r0, . . . , rT−1, sT |s0)
= p(a0|s0)× p(r0, . . . , rT−1, sT |s0, a0)
= πθ(a0|s0)× p(r0, . . . , rT−1, sT |s0, a0)
= πθ(a0|s0)× p(r0|s0, a0)× p(s1, . . . , rT−1, sT |s0, a0, r0)
= πθ(a0|s0)× p(s0, . . . , rT−1, sT |s0, a0)
= πθ(a0|s0)× p(s0|s0, a0)× p(a1, . . . , rT−1, sT |s0, a0, s1)
= πθ(a0|s0)× p(a1, . . . , rT−1, sT |s0, a0, s1)
= πθ(a0|s0)× p(a1, . . . , rT−1, sT |s1)
= . . .

=

T−1∏
t=0

πθ(at |st)

In our case, the probability of a trajectory is the probability
∏

πθ(yi |y<i ) = p(y): a LM !!
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Reinforcement Learning (3)

Learn with neural network to parameterize πθ by gradient descent.

∇J(θ) = ∇Eτ∼π [G(τ)] where G(τ) =
∑

t
rt in τ

= ∇
∑
τ

p(τ)G(τ) (def. expectation)

=
∑
τ

∇p(τ)G(τ) (gradient ↔ sum)

=
∑
τ

G(τ)∇p(τ) (gain is constant)

=
∑
τ

p(τ)
p(τ)

G(τ)∇p(τ) (multiply by one)

=
∑
τ

p(τ)G(τ)
∇p(τ)
p(τ)

(rearrange)

=
∑
τ

p(τ)G(τ)∇ log p(τ) (log trick)

∇J(θ) = Eτ∼π [G(τ)∇ log p(τ)] (def. expectation)
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Reinforcement Learning (4)

Learn with neural network to parameterize πθ by gradient descent.

∇J(w) = Eτ∼π [G(τ)∇ log(p(τ))]

= Eτ∼π [G(τ)
( T−1∑

i=0

∇ logπ(ai |si )
)
]

−→ ∇J(w) ≡ Log-likelihood gradient multiplied by G !!

REINFORCE algorithm (5)
While True:

• Sample τ (generate a reply) with the current model with parameters θ

• Compute G(τ)

• Sum log-likelihood losses for all actions in τ multiplied by G(τ)

(can sample multiple τ and average)
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Reinforcement Learning (5)

Variance Reduction
• Sampling from the model (MC methods) usually exhibits large variance

• Use a baseline that compare G(τ) with others

REINFORCE with Leave-One-Out Baseline (RLOO)
While True:

• Sample τ1 . . . τK (generate K replies) with the current model with parameters θ

• Compute G(τ1) . . .G(τK )

• Optimize θ with the gradient of:

1

K

K∑
k=1

(
G(τk)−

1

K − 1

∑
k′ 6=k

G(τk′
)
)( Tk−1∑

i=0

logπ(ak
i |sk

i )
)
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Types of Preferences

Preference Data DPREF
a collection of triplets (x , yc , yr )

• x the prompt (more generally the context);

• yc the preferred (chosen) the response;

• yr the rejected response.

yc is not the best response, simply a better one than yr

Extensions
Optionally, human labelers can add scores or features to responses. We will ignore this in the
following
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Learning the Reward Function (1)

Bradley-Terry Model
A BT model of preferences is a model that verifies, for each pair of events i , j:

p(i > j) =
p(i)

p(i) + P(j)
where i > j means that i is preferred to j

Build a BT model from rewards
• Let us define a neural network rφ (LSTM/Transformer. . . ) that given a sequence "x SEP y"

assign a reward score of y as a response to x ;

• We write this score rφ(y);

• We can define a probability p(y) = exp rφ(y)∑′
y exp rφ(y′)

We want to maximize that p(rφ(yc) > rφ(yr ):
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Learning the Reward Function (2)

Build a BT model from rewards
We want to maximize that p(rφ(yc) > rφ(yr ):

p(rφ(yc) > rφ(yr ) =
p(yc)

p(yc) + p(yr )

=

exp rφ(yc )
Z

exp rφ(yc )
Z +

exp rφ(yr )
Z

=
exp rφ(yc)

exp rφ(yc) + exp rφ(yr )
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Learning the Reward Function (3)

Build a BT model from rewards
We want to maximize that p(rφ(yc) > rφ(yr ): Equivalently, we want to minimize, by gradient
descent:

− log
exp rφ(yc)

exp rφ(yc) + exp rφ(yr )
= − log

1

1 + exp(rφ(yr )− rφ(yc))

= − log
1

1 + exp(rφ(yr )− rφ(yc))

= − log 1 + log(1 + exp(rφ(yr )− rφ(yc)))

L(φ) = log(1 + exp(rφ(yr )− rφ(yc)))

Reward Model training
1. Architecture:

– Usually a simple linear level h × 1 from the CLS/EOS token of the SFT Transformer LM

2. Training

– Usually just a few epochs (1?)
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Policy Learning : Regularization

Issues with the reward model
• usually yr and yc are generated by models trained with next-word prediction: very fluent

• the reward does not take fluency into account

• maximizing the expected reward results in non-fluent models

Use Regularization
• we want the final model to be close to SFT, so fluency remains.

• use a notion of close adapted for distributions: Kullback-Leibler divergence

DKL(PRL||QSFT ) =
∑

y
PRL(y) log(

PRL(y)
QSFT (y)

)

= Ey∼PRL(·)[log PRL(y)− log QSFT (y)]

We can approximate this loss by sampling y from the current model.
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Policy Learning : Reinforce

REINFORCE with reward from the RM with regularization
Maximize for each example

J(θ) =
1

K

K∑
k=1

R(yk)
T k∑
i=1

logπθ(yk
i |yk

<i )

where R is the RLOO reward with RM and regularization:

R(yk) = rφ(yk)−
1

K − 1
(
∑
k′ 6=k

rφ(k′))− λREG(
∑

i
(logπθ(yk

i |yk
<i )− logπSFT(yk

i |yk
<i )))
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Policy Learning: Proximal Policy Optimization (PPO) (1)

Another way to implement a policy gradient algorithm:
Define how much an action is better than another one on average A(s, a):

state value Vπ(s) = E[
∑T

k=0 rt+k |s]

state-action value Qπ(s, a)E[
∑T

k=0 rt+k |s, a]

advantage Aπ(s, a) = Qπ(s, a)− Vπ(s)

Find new policy with better advantage than previous policy

J(θ) =
1

T
∑

i

πθ(ai |si )

πold(ai |si )
Aπold (si , ai )
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Policy Learning: Proximal Policy Optimization (PPO) (2)

Issue with PPO: objective very unstable: big changes in θ, difficult to find an optimum

Use a clipped variant (Trust Region Optimization)

JCLIP(θ) =
1

T
∑

i
min[

πθ(ai |si )

πold(ai |si )
Aπold (si , ai ), g(ε,Aπold (si , ai ))]

where

g(ε,A) =

{
(1 + ε)A if A > 0

(1− ε)A otherwise.

This means that if πθ(ai |si )
πold(ai |si )

must be close to 1 otherwhise the gradient is null and there is no
update.
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Policy Learning: Proximal Policy Optimization (PPO) (3)

How to compute A in practice?
• Q(si , ai ) is approximated by the sum of rewards to go

Q(si , ai ) =
T∑

t=i
rt

• V (si ) is approximated by a neural network vφ

– typically a linear layer above the Transformer vector of wi

– trained with the LM, by mean-squared error

Add entropic regularisation on πθ

discourage predicting too few actions per state

• H(πθ(·|s)) = −
∑

a πθ(a|s) logπθ(a|s)

Final PPO objective:

JCLIP(θ) +
T−1∑
i=0

λ1H(πθ(·|si )) +
λ2

2
((

T−1∑
j=i

rj )− vφ(si ))
2
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Direct Policy Optimization (1)

Do we need really need reinforcement learning?
• We use RL because we want to incorporate a reward score (not simply 0/1 scores)

• but using full RL with a MDP formulation of LM. . . is maybe too much?

Can we take into account preferences (x , yc , yr ) directly?
• Direct Alignment algorithms

• Link to the paper (3)
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Direct Policy Optimization (2)

Start with the RL Objective with Regularization

argmax
θ

Eτ∼πθ [G(τ)]− βREG(θ)

• Recall what the probability of a trajectory/response is:
πθ(τ) =

∏
(si ,ai )∈τ πθ(ai |si )

• G(τ) is the sum of rewards for trajectory τ (with possibly RLOO baseline)

RL objective with KL regularization

argmax
θ

Eτ∼πθ [G(τ)]− βEτ∼πθ [log
πθ(τ)

πSFT (τ)
] = argmax

θ
Eτ∼πθ [G(τ)− β log

πθ(τ)

πSFT (τ)
]

We would like to see this as a KL divergence between πθ and . . . something easy to compute!
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Direct Policy Optimization (3)

DPO as minimizing KL divergence

argmax
θ

Eτ∼πθ [G(τ)− β log
πθ(τ)

πSFT (τ)
]

= argmax
θ

Eτ∼πθ [
1

β
G(τ)− log

πθ(τ)

πSFT (τ)
]

= argmax
θ

Eτ∼πθ [log exp
1

β
G(τ)− log

πθ(τ)

πSFT (τ)
]

= argmin
θ

Eτ∼πθ [log
πθ(τ)

πSFT (τ)
− log exp

1

β
G(τ)]

= argmin
θ

Eτ∼πθ [log
πθ(τ)

πSFT (τ)× exp 1
β

G(τ)
]

= argmin
θ

Eτ∼πθ [log
πθ(τ)

g̃(τ)
] with g̃(τ) = πSFT (τ)× exp

1

β
G(τ)

Almost there. . . but g̃ is not a proper distribution (does not sum to 1)
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Direct Policy Optimization (4)

From our objective

argmin
θ

Eτ∼πθ [log
πθ(τ)

g̃(τ)
] with g̃(τ) = πSFT (τ)× exp

1

β
G(τ)

Let us define a normalization for g̃ : z =
∑

τ ′ g̃(τ ′)
Note that g(τ) = g̃(τ)

z is a proper distributiuon (positive, sum to one)

We get a KL minimization

argmin
θ

Eτ∼πθ [log
πθ(τ)

g̃(τ)
] = argmin

θ
Eτ∼πθ [log

πθ(τ)

g̃(τ)
+ log z]

= argmin
θ

Eτ∼πθ [log
πθ(τ)× z

g̃(τ)
]

= argmin
θ

Eτ∼πθ [log
πθ(τ)
g̃(τ)

z

] = argmin
θ

Eτ∼πθ [log
πθ(τ)

g(τ)
]

We finally have a KL minimization!
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Direct Policy Optimization (5)

What is good about KL minimization
• KL is minimized when the two distribution are equal

• We have the solution of our problem: πθ(τ) = g(τ)

But . . .
• in practice z (hence r) is not tractable

• G still depends on training a reward model: not very convenient

We can express the sum of reward G from π:

πθ(τ) = g(τ) ⇔ πθ(τ) =
πREF (τ)× exp 1

β
G(τ)

z

⇔
πθ(τ)× z
πREF (τ)

= exp
1

β
G(τ)

⇔ exp
1

β
G(τ) =

πθ(τ)× z
πREF (τ)

⇔
1

β
G(τ) = log

πθ(τ)× z
πREF (τ)

⇔ G(τ) = β log
πθ(τ)× z
πREF (τ)

⇔ G(τ) = β log
πθ(τ)

πREF (τ)
+ log z
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Solution: From MLE/KL to Contrastive (back to word2vec?)

Recall the preference model probability, and use our definition of G:

p(yc > yr ) =
exp G(yc)

exp G(yc) + exp G(yr )

=
1

1 + exp(G(yr )− G(yc))

= σ(G(yc)− G(yr ))

= σ(β log
πθ(yc)

πREF (yc)
+ log z − β log

πθ(yr )

πREF (yr )
− log z)

= σ(β log
πθ(yc)

πREF (yc)
− β log

πθ(yr )

πREF (yr )
)

We can express the probability wtithout explicitly use a reward! We can train from preferences
directly

Training
For each triplet (x , yc , yr )

• update θ with the gradient of L(θ; x , yc , yr ) = logσ(β log πθ(yc )
πREF (yc )

− β log πθ(yr )
πREF (yr )

)
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