a
v
a
v
a
nt
v
a
it
v
it

Joseph Le Roux

January 9, 2026

fHac

Outline

= [ntroduction

= Reinforcement Learning (from Human Feedback) for Generation

= Learning a Reward Function

= Online Policy Learning for Generation

= Offline Policy: DPO

= Conclusion

Joseph Le Roux Generative Models for NLP January 9, 2026 2/36

DATE: 30/12/25

Joseph Le Roux Generative Models for NLP January 9, 2026 3/36

#+ENDsrc

= Introduction
L]

Reinforcement Learning (from Human Feedback) for Generation

Learning a Reward Function

Online Policy Learning for Generation

Offline Policy: DPO

Conclusion

«O»r «Fr < >« > Q>

Recap

So far we have seeen:

1. How word (token) vectors are the basis of text representation;
2. How Language Models can generate texts fluently

3. How Transformers have become the ubiquitous neural architectures for LMs

Today

How we can further train a LM to generate
not only fluent texts
but also useful texts given a task or a context

Using techniques from Reinforcement learning (1) (4)

Joseph Le Roux Generative Models for NLP January 9, 2026

4/36

LMs for interactions
We can use LMs to reply to a request by generating from a prompt (see previous lab session)

A probabilistic model for question answering
Given a prompt x (question, instruction...) we can generate a reply y by sampling the

conditional distribution:

P(x,y)

p(x)
where x, y is the sequence of x concatenated with y (usually with separator token <SEP> in
between)

p(ylx) =

4
With LMs
So in practice we want to learn to predict sequences x <SEP> y where:
x is fixed and is a typical question, and y is the correct answer
We can use a LM for that, trained with cross-entropy per word as before)

Issues

We do not have the correct answers y* for all questions

More imporantly, are all replies different from y* equally bad?

. L ' n '
Joseph Le Roux Generative Models for NLP January 9, 2026 5/36

A Typical Architecture for LM Post-training (1)
Goal: Align output with user’s expectation

1/ Supervised Fine-Tuning

Next-word prediction on a corpus of texts similar to target texts;
Usually from human-generated responses (eg Text + summary created by humans)

Model called msp1

y
2/ Collect Preference pairs and train an Reward Model
With SFT (or another model) generate responses y ...y, for prompt x
For each pair of responses,
1. ask a (human) labeler their preference;
2. create a corpus of triplets (x, yc, yr).
Train a model Ry to attribute a score to responses to reflect preferences)

3/ Train a Policy based on the Reward Model

initialized as wspT

use Reinforcement Learning or Direct Policy Optimization

4
Joseph Le Roux Generative Models for NLP January 9, 2026 6/36

A Typical Architecture for LM Post-training (2)

Example: Learn to generate summaries (2)

© Collect human feedback © Train reward model © Train policy with PPO

A Reddit post is One post with
sampled from — two summaries
the Reddit judged by a
TL;DR dataset. human are fed
to the reward

Anew postis
sampled from the
dataset.

model. f—
The policy
Various policies The reward generates a
are used to model summary for the
sample a set of calculates a post.
‘summaries. reward r for
each summary.
Two summaries El)
are selected for \
Py = = .
: The loss is The reward
. calculated based \ model calculates
A:u?an lubdges on the rewards | areward for the
which is a better i summary. i
summary of the ‘ , and human label, loss = log(afr;- r,)) i ;
post. update the
reward model. T The reward is l
i used to update
the policy via r -
% is better than k” “jis better than k™ PPO.

Joseph Le Roux Generative Models for NLP January 9, 2026 7/36

= [ntroduction
.

Reinforcement Learning (from Human Feedback) for Generation

Learning a Reward Function
Online Policy Learning for Generation

Offline Policy: DPO

Conclusion

«Or «Fr o« > < 3 Q>

Why we need more than just cross-entropy ?

Pros of Cross-entropy Loss

supervised, self-supervised
easy to implement
generates fluent texts (no grammatical errors)

trained to generate one correct solution

4
Cons of Cross-Entropy Loss
works at the word level, not at the text level
not possible to grade answers
not possible to add soft preferences)

Joseph Le Roux Generative Models for NLP January 9, 2026 9/36

Why Reinforcement Learning (Limits of cross-entropy)

RLHF is one component of post-training.

Post-training is a more complete set of techniques and best-practices to make language models
more useful for downstream tasks

)

RL

works at the level of sequences

grades different replies via a reward function

explore the search space enough to improve the current model)
Challenges of RL for text generation

we do not know the reward function

we do not want to lose fluency)

Joseph Le Roux Generative Models for NLP January 9, 2026 10 /36

Reinforcement Learning

Agent-Environnement Model
At each time t:

the agent witnesses the environment

... which is in state s;.

state reward :
action .
s, | |R A The agent performs an action $a;$. ..
y

R
S| Environment [e—— ... which transforms the environment

to state s;11 and gives reward req1,
and so on. ..

y
Definitions
1. The agent will generate trajectories from initial state sp:
S0,4d0,r0,51,d1,r2,82,...rT—18T
2. The function in charge of choosing actions is called the policy 7w)

For LMs

s; corresponds to the position i in the reply y

Joseph Le Roux Generative Models for NLP January 9, 2026 11/36

Reinforcement Learning (1)

We want to generate trajectories that earn rewards

from so (initial state, prompt)
choose actions (choose words for the reply) from policy 7y

so that the sum of all rewards is maximum)

A probabilistic variant: stochastic policy

do not choose actions, but rather sample
we need to parametrize a distribution g over actions

to maximize the expected sum of rewards

RL Objective for each example

il
meax J(e) = IETN‘II'Q [G(TH = ETNTre [Z rt]
t=0

so corresponds to the prompt for the current example, r; is the reward received after the tth

action (word)

- = = = >yt

Joseph Le Roux Generative Models for NLP January 9, 2026 12 /36

Reinforcement Learning (2)

Probability of a trajectory = Probability of a LM

In our case, the only source of stochasticity is the sampling of each word with policy my

p(s0, a0, r1,- -+, 57, r7) = p(s0) X p(ao, o, .- -, rr—1,57|s0) = p(ao, ro, - - -, rr—1,s7ls0)
= p(aolso) X p(ro, ..., rr—1,s7/50,a0)
= mg(aolso) x p(ro, .- -, rr—1,s7ls0,a0)
= mg(ao|so) X (r0|507 ao) X p(st,...,rr—1,S7|%0, a0, o)
= mg(aolso) X p(so,---,rT—1,5T]S0,a0)
= mg(aolso) x P(SO‘SO»BO) x p(ai,...,rr—1,57|S0, a0, 1)
= mg(aolso) x p(a1,...,rr—1,57|s0, a0, s1)
=mg(aolso) x p(a1,...,rr—1,s7l|s1)
T
= H 7o (at|st)
=0

In our case, the probability of a trajectory is the probability [[7o (yily<i) = p(y): a LM !l

Joseph Le Roux Generative Models for NLP January 9, 2026 13 /36

Reinforcement Learning (3)

Learn with neural network to parameterize my by gradient descent.
VJ(0) = VEr~x[G(T)] where G(T Z rein T
= VZ p(T)G(T) (def. expectation)
= Z Vp(r)G(T) (gradient <> sum)

= Z G(7)Vp(T) (gain is constant)

= Z p(r) G(T Vp(r) (multiply by one)
)

= Z V’ZS) (rearrange)

= Z p(T)G(T)Viogp(r) (log trick)

vJ(0) =]ETMT[(T)Vlogp(r)] (def. expectation)

Joseph Le Roux Generative Models for NLP January 9, 2026 14 /36

Reinforcement Learning (4)

Learn with neural network to parameterize my by gradient descent.

VJ(w) = Ernr[G(T)V log(p(7))]
T-1
=FErnn [G(T) (Z v IOgﬂ-(ai|5i))]
i=0

— VJ(w) = Log-likelihood gradient multiplied by G !!

REINFORCE algorithm (5)
While True:

Sample 7 (generate a reply) with the current model with parameters
Compute G(7)
Sum log-likelihood losses for all actions in T multiplied by G(1)

(can sample multiple 7 and average)

Joseph Le Roux Generative Models for NLP January 9, 2026 15 /36

Reinforcement Learning (5)

Variance Reduction

Sampling from the model (MC methods) usually exhibits large variance

Use a baseline that compare G(7) with others

REINFORCE with Leave-One-Out Baseline (RLOO)

While True:
Sample 71 ... 7K (generate K replies) with the current model with parameters
Compute G(71) ... G(7K)
Optimize 6 with the gradient of:

1 & 1 L
X > (6 - — G(T)) (D logm(af|sf))
k=1 i=0

K-1 o2k

Joseph Le Roux Generative Models for NLP January 9, 2026

= [ntroduction
L]

Reinforcement Learning (from Human Feedback) for Generation

Learning a Reward Function
Online Policy Learning for Generation

Offline Policy: DPO

Conclusion

«O»r «Fr < >« > Q>

Types of Preferences

Preference Data Dprer

a collection of triplets (x, yc, yr)
x the prompt (more generally the context);
yc the preferred (chosen) the response;
Yr the rejected response.

Yc is not the best response, simply a better one than y,

Extensions

Optionally, human labelers can add scores or features to responses. We will ignore this in the
following

Joseph Le Roux Generative Models for NLP January 9, 2026 18 /36

Learning the Reward Function (1)

Bradley-Terry Model

A BT model of preferences is a model that verifies, for each pair of events i, :
S p(i)

p(i>)) = —"F5—~
p(i) + P()

where i > j means that i is preferred to j

Build a BT model from rewards
Let us define a neural network ry (LSTM/Transformer...) that given a sequence "x SEP y"
assign a reward score of y as a response to x;

We write this score ry(y);

exp rg (¥)

We can define a probability p(y) = ST expra07)
y

We want to maximize that p(rg(yc) > rg(yr):

Joseph Le Roux Generative Models for NLP January 9, 2026 19/36

Learning the Reward Function (2)

Build a BT model from rewards
We want to maximize that p(re(yc) > rg(yr):
p(ye)

p(ye) + p(yr)
exp rg (yc)

p(re(ye) > ro(yr) =

Z
T expry(ye) 4 o ro (yr)
Z 4

exp rg(yc)
exp ry(ye) +exp ry(yr)

Joseph Le Roux Generative Models for NLP January 9, 2026 20/36

Learning the Reward Function (3)

Build a BT model from rewards

We want to maximize that p(re(yc) > rg(yr): Equivalently, we want to minimize, by gradient
descent:

B exp rg (ye) — log 1
exp ry(ye) +exp ry(yr) 1+ exp(rg(yr) — re(ye))
1

—log 1+ exp(ry(yr) — re(ye))
= —log 1 +log(1 + exp(ry(yr) — re(ye)))
L(¢) = log(1 + exp(ry(yr) — ro(yc)))

<
Reward Model training
1. Architecture:
Usually a simple linear level h x 1 from the CLS/EOS token of the SFT Transformer LM
2. Training
Usually just a few epochs (17))
Joseph Le Roux Generative Models for NLP January 9, 2026 21/36

= [ntroduction
L]

Reinforcement Learning (from Human Feedback) for Generation

Learning a Reward Function

Online Policy Learning for Generation

Offline Policy: DPO

Conclusion

«O»r «Fr < >« > Q>

Policy Learning : Regularization

Issues with the reward model

usually y, and y. are generated by models trained with next-word prediction: very fluent
the reward does not take fluency into account

maximizing the expected reward results in non-fluent models

)

Use Regularization

we want the final model to be close to SFT, so fluency remains.

use a notion of close adapted for distributions: Kullback-Leibler divergence

RL(Y)
Dy (Pre||QsFr) = Z Pri(y) 10%((y))
= EyNPRL(-) [log Pre(y) — log QsFr(y)]

We can approximate this loss by sampling y from the current model.)

Joseph Le Roux Generative Models for NLP January 9, 2026 23 /36

Policy Learning : Reinforce

REINFORCE with reward from the RM with regularization

Maximize for each example

Tk
1
JO) = 22 D R(F) D logmo(yfIy<y)
k=1 i=1

where R is the RLOO reward with RM and regularization:

ROM) = ra(r") = 72 (3 ra(K)) = Mre (Y (og mo(F1yE) — log mser (v 1v.)

Joseph Le Roux Generative Models for NLP

January 9, 2026

24/36

Policy Learning: Proximal Policy Optimization (PPO) (1)

Another way to implement a policy gradient algorithm:

Define how much an action is better than another one on average A(s, a):
state value V7 (s) = E[ZZ—:O reqkls]
state-action value Q™ (s, a)IE[ZZ:O reskls, al

advantage A™(s,a) = Q™(s,a) — V™ (s)

Find new policy with better advantage than previous policy

1 7o (ailsi) Told (e, 4.
O = T2 iy)

i

Joseph Le Roux Generative Models for NLP January 9, 2026 25/36

Policy Learning: Proximal Policy Optimization (PPO) (2)

Issue with PPO: objective very unstable: big changes in 0, difficult to find an optimum

Use a clipped variant (Trust Region Optimization)

1 . T aj|Si . .
SR (6) = Y minl T s (3,2, e A7 5. 2)]
i Ol 1 i

where

(e, A) (1+eA ifA>0
€ =
2 (1 —€)A otherwise.

This means that if % must be close to 1 otherwhise the gradient is null and there is no

update.

Joseph Le Roux Generative Models for NLP January 9, 2026 26 /36

Policy Learning: Proximal Policy Optimization (PPO) (3)

How to compute A in practice?

Q(si, aj) is approximated by the sum of rewards to go

V/(s;) is approximated by a neural network vy

typically a linear layer above the Transformer vector of w;

trained with the LM, by mean-squared error

b
Add entropic regularisation on gy
discourage predicting too few actions per state
H(mo(:|s)) = — 32, me(als) log me(als))
Final PPO objective:
T-1 Ay 2L
JUP(0) + 3 MaH(mo(1s) + 2 (3 1) = vi(s)’
i=0 j=i

Joseph Le Roux Generative Models for NLP January 9, 2026 27 /36

= [ntroduction
.

Reinforcement Learning (from Human Feedback) for Generation

Learning a Reward Function
Online Policy Learning for Generation
L]

Offline Policy: DPO

Conclusion

«Or «Fr o« > < 3 Q>

Direct Policy Optimization (1)

Do we need really need reinforcement learning?

We use RL because we want to incorporate a reward score (not simply 0/1 scores)

but using full RL with a MDP formulation of LM. .. is maybe too much?

V.
Can we take into account preferences (x, yc, y,) directly?
Direct Alignment algorithms
Link to the paper (3))

Joseph Le Roux Generative Models for NLP January 9, 2026 29 /36

Direct Policy Optimization (2)

Start with the RL Objective with Regularization

argmax Er 7, [G(T)] — BREG(6)
0

Recall what the probability of a trajectory/response is:
7o (1) = (5,0, e mo(ailsi)

G(7) is the sum of rewards for trajectory 7 (with possibly RLOO baseline))

RL objective with KL regularization

o (T o (T
aulrg;nmd[iﬂw-,r(9 [G(7)] — BEr~mg[log 7[.51?'77('(3.)} = arg;n;aLXIE-r~7T6 [G(T) — Blog ﬂ_szi_,(_(z_)]
We would like to see this as a KL divergence between 7y and ... something easy to compute!

Joseph Le Roux Generative Models for NLP January 9, 2026 30/36

Direct Policy Optimization (3)

DPO as minimizing KL divergence

arggnax Ernng[G(T) — Blog %7('7(—3—)]
1 o (T)
= argznax Ernmrg [E G(t) — log ﬂ—SﬁiT(T)]

7o (T)

1
= Eramg L —G(71) —log ——(—
arggnax 7~ [10g €XP 3 (1) —log ﬂ.SFT(T)]

. mo(T)
= Errmgllog =
arg;nln o llog ST ()
mo(7)]
) X exp %G(T)

— log exp %G(T)]

= arg;nln Er~mg[log ST (s

1
=argmin B, [log 720(7—)} with (1) = 7°F7 (1) x exp = G(7)
0 &(7) B
Almost there... but g is not a proper distribution (does not sum to 1)

Joseph Le Roux Generative Models for NLP January 9, 2026 31/36

Direct Policy Optimization (4)

From our objective

with g(7) = 77 (7) x exp lG(‘r)

B

argmin E;r, [log mo(7)]

) &(7)

Let us define a normalization for g: z=3"_, g(7')
Note that g(7) = @ is a proper distributiuon (positive, sum to one)

y
We get a KL minimization
argmin Err, [log 7T~9 (T)] =argmin E;~r, [log ﬂ:e (r) + log z]
) &(r) 0 &(r)
=argmin E;~r, [log M]
0 &(7)
o (T mo (T
:argénin]ETMTe [log é)] = argénin Er~mgllog ;((T))]
z

We finally have a KL minimization!)

Joseph Le Roux Generative Models for NLP January 9, 2026 32/36

Direct Policy Optimization (5)

What is good about KL minimization

KL is minimized when the two distribution are equal

We have the solution of our problem: my(7) = g(7)

)
But ...
in practice z (hence r) is not tractable
G still depends on training a reward model: not very convenient)
We can express the sum of reward G from 7:
REF 1
7= (1) X exp = G(T)
mo(r) = () & () = = o Lo = 10g ™D X 2
z R 7REF (1)
wo(T) X z 1 G(r))
——=— = exp = G(T X
7REF (1) P73 & G(r) = Blog To(T) X 2
) () x TREF (1)
mo(T) X z
S exp—=G(T) = ——
pﬁ (r) wREF (7) & G(T):ﬁlogL(T)—f—logz
TREF (1)
4
Joseph Le Roux Generative Models for NLP January 9, 2026 33/36

Solution: From MLE/KL to Contrastive (back to word2vec?)
Recall the preference model probability, and use our definition of G:

exp G(yc)
exp G(yc) + exp G(yr)
1
1+ exp(G(yr) — G(yc))
U(G(YC) - G(Yr))
mo(yc)

plye > yr) =

7o (yr)

= o(Blog REF ())JrlongﬁlogT()flogz)
_ mo(ye) _ mo(yr)
= 70108 Rer (1) ~ 108 wrer ()

We can express the probability wtithout explicitly use a reward! We can train from preferences
directly

Training
For each triplet (x, yc, yr)

update 0 with the gradient of £(0;x, ye, y,) = logo(8log T?g;ﬁ — Blog ’,;gﬁy')

Joseph Le Roux Generative Models for NLP January 9, 2026 34/36

= [ntroduction
.

Reinforcement Learning (from Human Feedback) for Generation

Learning a Reward Function
Online Policy Learning for Generation

Offline Policy: DPO
L]

Conclusion

«O»r «Fr < >« > Q>
~ JosephleRoux ~ Generative Modelsfor NLP January9,2026 = 35/36

Bibliography

Nathan Lambert (2024). Reinforcement Learning from Human Feedback, Online.

Nisan Stiennon and Long Ouyang and Jeff Wu and Daniel M. Ziegler and Ryan Lowe and Chelsea
Voss and Alec Radford and Dario Amodei and Paul F. Christiano (2020). Learning to summarize
from human feedback, CoRR.

Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D Manning and Stefano
Ermon and Chelsea Finn (2023). Direct Preference Optimization: Your Language Model is
Secretly a Reward Model.

Sutton, Richard S. and Barto, Andrew G. (2018). Reinforcement Learning: An Introduction, The
MIT Press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Machine Learning.

Joseph Le Roux Generative Models for NLP January 9, 2026 36/36

	Introduction
	Reinforcement Learning (from Human Feedback) for Generation
	Learning a Reward Function
	Online Policy Learning for Generation
	Offline Policy: DPO
	Conclusion

