Nadi Tomeh

7/2/25

«O>r «Fr «=>» o
~ NadiTomeh ~ Generative Models for NLP 7/2/35 1/46

Outline

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 2/46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Recap of RNN-Based Language Models

Quick Review
RNN/GRU/LSTM Architectures: These architectures process sequences token by token, updating a
hidden state h; at each step t.

h;: captures the information from all previously seen tokens.
GRUs and LSTMs introduce gating mechanisms to mitigate vanishing or exploding gradients.

Hidden State h;:

Serves as a summary (or memory) of the sequence up to position t.
Used for predicting the next token in a language modeling setup:

p(Weg1 | wr...we) = go(he),

where h: evolves from the previous hidden state and the current input token embedding.

Limitations of RNN-Based Models

Sequential Dependence:
For a sequence of length n, RNNs require O(n) steps of recurrent updates. Can be slow and hard to parallelize.
Difficulty Capturing Long-Range Context:

Even LSTMs/GRUs can struggle with extremely distant dependencies, as gradients still degrade over many
timesteps.

Nadi Tomeh Generative Models for NLP 7/2/25 4/46

Why RNNs Cannot Be Parallelized Across Time

Core Recurrence Equation

In a n RNN, the hidden state h; € R™ at time t is defined by a recurrence of the form:

h, = fg(ht_l, wt),

Forward Pass Constraint

Because h; depends on h;_1, each state must be computed in sequence:

hy — hy = --- — h,.

We cannot compute h; until we have h._;. This prohibit parallelizing over time steps in the forward pass.

BPTT Perspective

The gradient w.r.t. h;—; involves a Jacobian term:

o ot Oh

dhe_, Ohy Ohi_,

where a;?th—tl must be known before updating h:_1: gradients also have to be propagated step-by-step.

Nadi Tomeh Generative Models for NLP 7/2/25

5/46

h: as Memory: Markovian Perspective and Short Memory

Hidden State h; as a Memory of the Past
In an RNN, the hidden state h; € R™ evolves via:
h: = fo (ht—17xt)7

capturing all past inputs {x1,...,x:} through a single vector.

Intuitively, h; serves as the network’s internal memory, summarizing prior context relevant for predicting
future tokens.

Markovian and Geometric Ergodicity
h; forms a Markov chain in the hidden-space:
P(ht ‘ ht—17ht—27---) = P(ht | ht—l)-

Under mild contractive conditions on fg (e.g., Lipschitz constant < 1 in a bounded region), the Markov
chain is geometrically ergodic: For any two initial states ho and h(,, we have

lh: — he|| < AP|lho — hg||, for some 0 < A < 1.

The result is Exponential Forgetting: The influence of initial states ho vanishes at a rate \'.

Nadi Tomeh Generative Models for NLP 7/2/25

6/46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Bottleneck of a Single Hidden State h;

Recurrence in a Standard Elman RNN LM

Hidden state update:
h: = tanh(thxt + Wpyheor + bh)-

Prediction logits:
z; = Wy h: + by, p,=softmax(z:), po(wir1 | wie) =Py u,,,-
h. € R™, x; € RY, W, € R™9 Wy, € R™™ Wy, € RIVIXM etc.
The Bottleneck
h; must encode all relevant history in a single vector of size m.

As t grows, h; struggles to maintain detailed information about very distant tokens.

This can degrade the accuracy of z; (the logits) and thus the next-word distribution.

Nadi Tomeh Generative Models for NLP 7/2/25

8/46

Storing All Previous Hidden States in M,

Expandable Memory

Instead of relying purely on h:, we keep each past hidden state:
M ={h1, ha, ..., h:}.

Each h, € R™ can be viewed as an encoding of the input at time 7.

M expands over time, forming a dynamically growing repository of contextual vectors.

Context Vector c;

We combine the memory vectors in M, into a single c; € R™, representing the relevant information from

{hi,..., h}.

Next, we incorporate c; along with h; to predict:

Zy — ch [ht7 Ct] 4 by, P: = softma.x(zf).

Here, [h¢; c:] € R?™ is the concatenation; W, € RIVI*2™,

Nadi Tomeh Generative Models for NLP

7/2/25

9/46

Combining the Memory Vectors M; = {hy, ..., h:} into a Context Vector |

Naive Summation or Averaging

Sum or average:

t
c: = ZhT or c: = % ZhT.
=il

All vectors contribute equally, often losing important distinctions among tokens (no weighting).

Hard Selection (One-Hot or Multi-Hot)

Define a discrete vector a; € {0, 1}, then:

Ct = % Zat,.r h7—.

ZT:l Qt,r =1

One-hot: exactly one entry a; -+ = 1, rest 0.
Multi-hot: could select multiple h, simultaneously.

Non-differentiable w.r.t. o -, complicates gradient-based learning.

Nadi Tomeh Generative Models for NLP 7/2/25

10/ 46

Combining the Memory Vectors M; = {hy, ..., h:} into a Context Vector I

Differentiable Soft Selection
Let o, € [0,1] with 3°F_ e, = 1.

t
T
C: = O ‘ht = E at,q—hﬂ—.
T=1

c: is a weighted combination of memory vectors, focusing on relevant ones.

{at,+} can be learned end-to-end with backprop.

Nadi Tomeh Generative Models for NLP 7/2/25 11 /46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Learning the Weights o, with Attention

Attention as a Similarity-Based Weighting

We want to find how much each past hidden state h, (for 7 =1,...,t — 1) contributes to the current
context.

Define a score function e; . that measures the similarity between h; (the “query”) and h, (the “key”).
St,r = Sim(ht, hT)

We then convert these raw scores {e; -} into attention weights via a softmax:

t—1
exp(s
Qi r = #, for 7=1,...,t—1 This ensures Zat,f = Il
> exp(sek) =1

Context Vector ¢; Using Learned Weights

t—1

C: = E Qi r hT.

=il
The at,~ are learned dynamically based on the similarity of h; and h, focuses on relevant past states.

Nadi Tomeh Generative Models for NLP 7/2/25 13 /46

Four Common Similarity (Score) Functions |

1. Dot Product
St,r = htT th

where h:, h, € R™.
Simple and fast; purely linear similarity.

Works well if the norms ||h;|| and || h.|| are not too large.

2. Scaled Dot Product (Vaswani)

h! h.
St,r =)
v m

where again h:, h; € R™.
Dividing by v/m (the dimension of h) prevents large dot-product values.

Popular in Transformer architectures.

Nadi Tomeh Generative Models for NLP 7/2/25

14 /46

Four Common Similarity (Score) Functions Il

3. Bilinear (Luong Attention)
st,-r - h;r Wattn h7'7 Wattn € Rmxm‘

Learns a transformation of h, before comparing to h;.

More expressive than a raw dot product, but adds @(m?) parameters.

4. MLP (Additive / Bahdanau Attention)

Ser = v tanh(Wa he + U, hT),
where W,, U, € R™™ v, € R™.

Uses a small neural network for scoring each pair (he, h;)

Potentially more flexible than dot-based approaches, but computationally heavier.

Nadi Tomeh Generative Models for NLP 7/2/25

15 /46

Extending RNNs to Sequence-to-Sequence Models

Goal: Machine Translation (MT) Example

Input (source sequence): (wi,...,w;°).

Output (target sequence): (w;,..., wn°).

We want to learn pg(wj™®, ..., wae | Wi, ..., wS®), a conditional generative model.
Encoder—Decoder Architecture

Encoder (RNN): Processes the source tokens into hidden states {h$", ... h3}.

Decoder (RNN): Generates target tokens (thrg) one by one, conditioning on the encoder outputs.

Without attention, the decoder uses only the final encoder hidden state (a single vector) as a context:

enc
hcontext = hn 0

Limitation: A single fixed-size vector h}' must encode the entire source sentence: bottleneck, again.

Nadi Tomeh Generative Models for NLP 7/2/25

16 /46

Integrating Attention in Seq2Seq (Bahdanau et al.)

Attention Over Encoder Hidden States
Instead of relying on h;"° alone, maintain a memory of {h"°,... A"},
At each decoder timestep t:

d
cone — E": von B apn = exp(s(hi<e, he™))
— ’ v 9) 22:1 exp(s(h?ec, hinc)) ’

where hd°® € R™ is the current decoder hidden state.

The a:,- measure how relevant the encoder’s state h$"¢ is at decoding step t.

Context-Augmented Decoder State

The decoder RNN update can then incorporate ¢ (plus h%°S, the previous decoder state) to predict:
hie = £, (hi‘iﬁ, wi'e, c‘;‘“C) and po(w®) = softmaX(Why hiee ¢ by).

Result: A trainable alignment matrix « via attention, letting the model focus on relevant source positions
for each target word.

Nadi Tomeh Generative Models for NLP 7/2/25 17 /46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Overview and Motivation

Goal: Autoregressive Language Modeling

We want a next-token distribution:

Po(Wes1 [wi, ...

but without RNN recurrence.

Decoder-Only Transformer: Each token attends to all prior tokens in parallel, using a mask to maintain

causal order.

High-Level Steps (One Layer)

1.
2.
3.
4.
5.

Multi-Head Self-Attention (masked).

Positional Encodings to inject sequence ordering.
Residual + LayerNorm.

Feed-Forward Network (FFN) (applied to each token).
Another Residual 4+ LayerNorm.

Stacked for L layers, then project to output logits.

Nadi Tomeh Generative Models for NLP

7/2/25

19 /46

Masked Multi-Head Self-Attention |

Token-by-Token Equations

Setup: We have n tokens, each with embedding x; € R9, for i =1,...,n.

Per-token query, key, value:
g, =Wx e R% k=W x;eR% v;=W"x eR¥,

where W@ WK ¢ R4 WY ¢ RI*%,

Scores and softmax:

o 9k ewp(sy)
TVdC Y X exp(sim)

Attention output for token i:

n
Yi= E Qjj Vj.
Jj=1

Nadi Tomeh Generative Models for NLP 7/2/25

20/46

Masked Multi-Head Self-Attention |l

Matrix Form Equations (All Tokens in Parallel)

Collect token embeddings x; into matrix X € R™?: X = [x{;...;x{].

Q=XWecR™ K=XWKecR™* v=xw"eR"”"%,
: _ OKT> nxdy
Attention(Q, K, V) = softmax(e vV, eR"%.

Each row of the result is y,-T, matching the per-token outputs y; from the single-element view.

Nadi Tomeh Generative Models for NLP 7/2/25

21/46

Masked Multi-Head Self-Attention IlI

Masked Self-Attention (Causal LM)

For autoregressive language modeling, token i must not attend to tokens j > i.

We add a M € R"™*":
.. 0, if j <,
Mli,j] = { L
—o0, ifj>i.
Then:)
QK™ + M 2%« R™ ensures each row i ignores columns j > i.

Output shape still R™ %, but strictly left-to-right in coverage.

Example: n = 4 Tokens

Token visibility:

0 —o0o —o0o —00
i 0 0 —o00o —00 Token #1 sees no preceding tokens (only itself).
o o 0 —oo Token #2 sees #1 and itself, but not #3 or #4.
0 0 0 0

Etc.

Nadi Tomeh Generative Models for NLP 7/2/25 22/46

Masked Multi-Head Self-Attention IV

Multi-Head Extension
Multiple sets of W, WK WY for i=1,...,h.
head; = Attention (x we, x wk, xwY) € R™% .
Concatenate heads:
MultiHead(X) = Concat(headl, RN headh) we, w°e R{Fd)xd,

Why multi-head?

Different heads can specialize: e.g., local vs. distant context, syntactic vs. semantic cues, etc.

Nadi Tomeh Generative Models for NLP 7/2/25

23/46

The Problem of Order and the Role of Positional Encodings

Permutation-Invariant Attention

So far, self-attention alone (without masks or positional info) is inherently permutation-invariant:

Swapping token i with token j in X just permutes the rows of @, K, V, and thus permutes the output as well.

Why is this a problem?

A sentence like Cat chases dog conveys a different meaning if tokens are rearranged to Dog chases cat.
Pure attention sees token embeddings as a set with no inherent notion of “first token,” “second token,” etc.

Positional Encodings: Injecting Order

We assign each position i a vector PE(i) € RY.
Then we add PE(/) to the original token embedding x;:

x; = x; + PE(i).
The model's self-attention layers now see x}, which encodes both the token's identity and its position.

Learned vs. Sinusoidal

Learned position embeddings: we maintain a parameter table P € R™>*¢ so PE(/) is just P[i,:].

Sinusoidal: uses sines and cosines at different frequencies to represent positions.

Nadi Tomeh Generative Models for NLP 7/2/25

24 /46

Sinusoidal Positional Encodings |

Formula

PE(pos, 2j) = sin(PE(pos,2j+ 1) = cos(

pos
10000 2/4d) 10000 2J/d

where pos = position index € {0,1,...}, and 2j, 2j 4+ 1 index the even/odd dimensions in RY.

Why Sinusoids?
Relative Offsets: PE(pos;) — PE(pos;) can be learned by the model to represent “distance” between
positions.

Periodicity: The model can exploit trigonometric functions to detect repeating patterns (e.g., rhythmic or
periodic structure).

No Extra Parameters: These are fixed functions, so no large parameter table is needed.

Nadi Tomeh Generative Models for NLP 7/2/25 25/46

Sinusoidal Positional Encodings Il

Relative Offsets: Encoding Distance Between Tokens

The difference between two positional encodings encodes relative position information:

PE(posz) — PE(pos1) = 2 cos (posi + pos;) in (posz — posi) .

2 - 100002/ 2 -10000%/4

The model can learn to use this difference to infer how far apart two tokens are, rather than relying on
absolute positions.

This helps generalize to longer sequences beyond those seen in training.

Periodicity: Capturing Repeating Patterns
The sinusoidal function is periodic, meaning:
sin(x) = sin(x + 27k), Vk € Z.

Different frequency components allow the model to capture:

Short-range dependencies (small denominator: high frequency).
Long-range dependencies (large denominator: low frequency).

Nadi Tomeh Generative Models for NLP 7/2/25 26 /46

Sinusoidal Positional Encodings Ill

Example: d =6,pos =0...3
Suppose d = 6. Then half of those (3 dims) are sines (even indices: 0,2,4), half (odd indices: 1,3,5) are
cosines.

For positions pos = 0, 1,2, 3, you might get:

sin(0) 0

cos(0) 1

| sin(0/10000"%) | |0

PE(0) = cos(0,/10000%/3) 1
sin(0,/10000%/3) 0
cos(0/10000%/3) 1

For pos = 1, these become small angles in some coordinates; for pos = 2, 3, the angles grow accordingly.

Nadi Tomeh Generative Models for NLP 7/2/25 27 /46

Residual + Layer Normalization |

Residual Connections
Let Z = (Multi-Head Attn or FFN output) € R, then the output becomes:

X =X+2Z

Better gradient flow: The gradient can “skip” sub-layers if needed, preventing severe vanishing/exploding

issues in deep networks.
Stabilizes training: Each sub-layer only needs to learn a “residual” function around the identity. In practice,

deeper models converge faster and more reliably.

Nadi Tomeh Generative Models for NLP 7/2/25 28 /46

Residual + Layer Normalization Il

LayerNorm

x — p(x)
o(x)

LayerNorm(x) = O+ 8,

u(x) = %Zle X; is the mean of x.

o(x) = \/% Zl.d:l(x,- — p(x))? is the standard deviation of x.

~, B € RY are learned scale and shift parameters.

Helps maintain stable activations across tokens and layers.

Application within a Block

x € R%.

Each Transformer sub-layer (Multi-Head Attention or FFN) is wrapped with:

X + LayerNorm(X + subLayer(X)).

Residual connections allow deeper networks by letting gradients bypass sub-layers if needed.

LayerNorm ensures each token's feature dimension remains stable in mean and variance.

Nadi Tomeh Generative Models for NLP

7/2/25

29 /46

Position-Wise Feed-Forward Network (FFN)

Position-Wise MLP

Definition: For each token embedding x € R9, we apply a 2-layer feed-forward transformation:
FFN(x) = max (0, x W1 + b1) W3 + b,

where:
W1 c Rdxdff’ W2 c RdffXd.
b, € R¥ by € RY.
Typically di > d; e.g. dis = 2048 and d = 512, called bottleneck — expansion — projection” structure.

Shape & Per-Token Independence
Input to FFN layer: H € R™? where n is the number of tokens.
We apply FFN row by row, i.e. each h; € R? (the i-th token's vector) is mapped to another h} € RY.
max(0, -) is the ReLU nonlinearity.

This is called position-wise because each token’s position is processed independently, ignoring any
cross-token interaction in this sub-layer.

Nadi Tomeh Generative Models for NLP 7/2/25 30/46

Putting It All Together: Composing Transformer Sublayers for LM |

Layer Composition in a Decoder Block

Let the input to the first layer be
X® =X4+PE eR™,

where X € R™? are token embeddings and PE € R"*? are positional encodings.

Each decoder layer | (for | =1,...,L) is a composition of sublayers:

X" = LayerNorm (X(lfl) + FFN (Laye]rNorm(X(F1> + MaskedMHA(X(Fl))))).

Nadi Tomeh Generative Models for NLP 7/2/25 31/46

Putting It All Together: Composing Transformer Sublayers for LM Il

Output Projection to Vocabulary Distribution

After L layers, we obtain final representations:
Y = X e R
For each token (row) y; € R in Y, compute logits:
zi =y Woui + bows, Wouw € RV b e RV
Apply softmax to obtain the next-token probability distribution:

pg(w,- | wi,..., W,;l) = p; = softmax(z;) € RV,

Nadi Tomeh Generative Models for NLP 7/2/25

32/46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Training Transformers: Essential Points and Equations |

Training Objective

For language modeling, minimize cross-entropy loss:

L(e) = —Zlogpe(wf+1 | W1,...,W,-)7

i=1

where pg(wit1 | wi,...,w;) is computed via a softmax over logits.

Optimizer and Learning Rate Schedule

Optimizer: Adam/AdamW is used for adaptive moment estimation.

Learning Rate: A warmup phase followed by inverse square-root decay:
Ne = dopo) ~min<t70'5, 1.‘7'71'5)7

where 7 is the warmup period (steps) and dmodel is the model dimension.

Nadi Tomeh Generative Models for NLP 7/2/25

34/46

Training Transformers: Essential Points and Equations Il

Dropout

For an activation vector z € RY, dropout applies a mask m € {0, 1}d with
m; ~ Bernoulli(p),

and outputs
3= zOmMmM

p
Applied in attention, FFN, and residual connections to reduce overfitting.

Nadi Tomeh Generative Models for NLP 7/2/25

35/46

Training Transformers: Essential Points and Equations IlI

Label Smoothing

Instead of a one-hot target, assign a smoothed target distribution:

) 1—e¢ if k=k",
G = e ; x
V=1’ if k # k",

where k™ is the correct token,

V| is the vocabulary size, and € is a small constant (e.g., 0.1).

Helps prevent overconfidence and improves generalization.
Gradient Clipping
To stabilize training, clip gradients:
c
VoLl <+ VoLl - Inin(l7 7),
VoLl

where c is the clipping threshold.

Nadi Tomeh Generative Models for NLP 7/2/25 36 /46

Why Transformers Train Efficiently on GPUs

Parallelizable Operations

Matrix Multiplications: All sublayers (multi-head self-attention, feed-forward networks) involve large matrix
multiplications that are highly optimized on GPUs.

Teacher Forcing in Training: When training with teacher forcing, the target sequence is known. =- Losses
for all positions are computed simultaneously by arranging tokens in tensors.

No Recurrence: Unlike RNNs, Transformers do not require sequential updates over time steps. This allows
all token positions to be processed in parallel.

Illustration: Parallel Loss Computation

Suppose we have a batch of B sequences, each of length n. All token embeddings are stored in a tensor
X c RBXnXd.

The Transformer computes outputs Y € RE*™9 in parallel for every position.

The predicted logits Z € RE*™ VI are computed via:
Z=Y Wout + bout:

and the cross-entropy loss is computed over all positions simultaneously.

Nadi Tomeh Generative Models for NLP 7/2/25 37/46

Computational Complexity: Transformer vs. RNN |

Transformer Training Complexity

Parallel Processing:

The entire input sequence of n tokens (batch size B) is processed simultaneously.
Token embeddings are arranged in a tensor: X € RExnxd,

Self-Attention Computations:
For each layer, self-attention requires computing the matrix product @ K| with cost:

O(B-n2~dk),

where Q, K € RBExnxdk,
Additional matrix multiplications (e.g., with V) also scale similarly.
Overall Training:

Although self-attention has a quadratic dependency in n, modern GPUs/TPUs perform these large matrix
multiplications in parallel.
Backpropagation is applied concurrently over all tokens, making training efficient even for long sequences.

Nadi Tomeh Generative Models for NLP 7/2/25 38/46

Computational Complexity: Transformer vs. RNN Il

RNN Training Complexity

Sequential Processing:

An RNN processes tokens one by one, unrolling over n time steps.
The input is processed as a sequence: {x1, X2,...,Xn} with recurrence.

Per-Step Cost:

Each time step involves computing:
hy = fg(ht—1,xt),

with cost O(f(d)) per step.

Overall Training:

Total cost per sequence: O(n- f(d)).
Gradients are propagated sequentially via BPTT, limiting parallelization.

Transformer Inference Complexity

Autoregressive Generation: Inference is inherently sequential as each token depends on previously
generated tokens: this requires O(t*) operations (for a sequence of length t).

Caching Mechanism: Previously computed key and value matrices are cached to avoid redundant
computations.

Nadi Tomeh Generative Models for NLP 7/2/25

39/46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Pretraining and Fine-Tuning: Technical Setup |

Pretraining Stage (Unsupervised)

Objective: Learn general language representations from large-scale, unlabeled corpora.
Common Pretraining Objectives:
Causal Language Modeling (e.g., GPT-style):

Lim(0) = *Zlogm(m’ﬂ |wi,...,wi),

i=1

where pg(wiy1 | wi,...,w;) is computed via softmax over vocabulary logits.
Masked Language Modeling (e.g., BERT-style):

Lum(8) = — > logpe (Wi | W),
ieM
where M is the set of masked token positions and w denotes the input sequence with masks applied.
Input: A large corpus of text.

Architecture: A Transformer (decoder-only for GPT, encoder-only for BERT, or full encoder—decoder for
models like T5) with parameters @ shared across all layers.

Nadi Tomeh Generative Models for NLP 7/2/25 41 /46

Pretraining and Fine-Tuning: Technical Setup I

Fine-Tuning Stage (Supervised)

Objective: Adapt the pretrained Transformer to a downstream task (e.g., text classification, translation,
question answering) using a labeled dataset.
Task-Specific Head:

For classification, add a linear layer with parameters W € R?%€ and bias b € RS, where C is the number of
classes.
y = softmax (y Wqs + bds),

with y being the final hidden state (often corresponding to a special [CLS] token).
For translation, the encoder—decoder architecture is used and cross-attention is added; the loss remains
cross-entropy on the target sequence.

Fine-Tuning Loss: Typically, a supervised cross-entropy loss is used:

Lr7(0, Ohead) = — Z 10g Po,64caq (y/ | X")’

where x; is the input and y; is the target label.
Parameters @ are initialized from the pretrained model.

The task-specific head parameters Bheaq are initialized randomly.

Nadi Tomeh Generative Models for NLP 7/2/25 42 /46

= Recap and Motivation

= Expanding RNN Memory Beyond a Single Hidden State
= Attention Mechanisms

= Transformer Architecture for Language Modeling

= Training Transformer Models

= Pretraining and Fine-Tuning Transformers

= Transformer Setup Variants: GPT, Full Transformer, and BERT

Three Transformer Setups |

Decoder-Only Transformers: GPT Family

Architecture:

Uses a decoder-only Transformer with masked self-attention.
Input: a sequence of token embeddings X € R"*9 (with positional encodings added).
Mask: Enforces causal (left-to-right) attention:
KT +M
Attention(Q, K, V) = softmax(u) v,
Vdk
where M([i, j] =0 for j < i and —oo for j > i.

Objective: Autoregressive language modeling.

,CLM(O) = 7210gp9(W;+1 | W1,...,W,').

i=1

Key Points:

All computations are parallelizable over sequence positions, except for the causal masking.
Suitable for large-scale pretraining and text generation.

Nadi Tomeh Generative Models for NLP 7/2/25

44 /46

Three Transformer Setups |l

Full Transformer (Encoder—Decoder)

Architecture:

Consists of an Encoder and a Decoder.

Encoder: Processes source sequence X5 € R"*9 with self-attention (unmasked).

Decoder: Processes target sequence X8 € R™*9 with masked self-attention, and attends to encoder outputs
via cross-attention.

Encoder and decoder stacks are each built from residual-connected layers of multi-head self-attention and FFN.

Objective: Sequence-to-sequence learning (e.g., for translation):

ﬁsquseq Z lOg Po (trg

where H®™ are the encoder outputs.

trg enc
7...,W,.fl,H)

Enables contextualized encoding of the source and dynamic alignment during decoding.

Widely used for tasks like machine translation and summarization.

Nadi Tomeh Generative Models for NLP 7/2/25 45 /46

Three Transformer Setups IlI

Encoder-Only Transformers: BERT

Architecture:

Uses only the encoder part of the Transformer.
Processes a full input sequence X € R"*9 with self-attention (unmasked).
Positional encodings are added to maintain token order.

Pretraining Objectives:
Masked Language Modeling (MLM): Randomly mask some tokens and predict them.

Lvm(0) = = logpe (Wi | V~V)7
ieM
where M is the set of masked token indices.

Fine-Tuning: Adapt the pretrained encoder for downstream tasks (e.g., classification, question answering)
by adding a task-specific head.

Nadi Tomeh Generative Models for NLP 7/2/25 46 / 46

	Recap and Motivation
	Expanding RNN Memory Beyond a Single Hidden State
	Attention Mechanisms
	Transformer Architecture for Language Modeling
	Training Transformer Models
	Pretraining and Fine-Tuning Transformers
	Transformer Setup Variants: GPT, Full Transformer, and BERT

