
Generative Models for NLP
Attention Mechanisms and Transformer Architectures

Nadi Tomeh

7/2/25

Nadi Tomeh Generative Models for NLP 7/2/25 1 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 2 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 3 / 46

Recap of RNN-Based Language Models

Quick Review
• RNN/GRU/LSTM Architectures: These architectures process sequences token by token, updating a

hidden state ht at each step t.
– ht captures the information from all previously seen tokens.
– GRUs and LSTMs introduce gating mechanisms to mitigate vanishing or exploding gradients.

• Hidden State ht :
– Serves as a summary (or memory) of the sequence up to position t.
– Used for predicting the next token in a language modeling setup:

p(wt+1 | w1 . . .wt) ≈ gθ(ht),

where ht evolves from the previous hidden state and the current input token embedding.

Limitations of RNN-Based Models
• Sequential Dependence:

– For a sequence of length n, RNNs require O(n) steps of recurrent updates. Can be slow and hard to parallelize.
• Difficulty Capturing Long-Range Context:

– Even LSTMs/GRUs can struggle with extremely distant dependencies, as gradients still degrade over many
timesteps.

Nadi Tomeh Generative Models for NLP 7/2/25 4 / 46

Why RNNs Cannot Be Parallelized Across Time

Core Recurrence Equation
In a n RNN, the hidden state ht ∈ Rm at time t is defined by a recurrence of the form:

ht = fθ
(

ht−1, w t

)
,

Forward Pass Constraint
Because ht depends on ht−1, each state must be computed in sequence:

h1 → h2 → · · · → ht .

We cannot compute ht until we have ht−1. This prohibit parallelizing over time steps in the forward pass.

BPTT Perspective
The gradient w.r.t. ht−1 involves a Jacobian term:

∂`

∂ht−1
=

∂`

∂ht

∂ht

∂ht−1
+ · · ·

where ∂ht
∂ht−1

must be known before updating ht−1: gradients also have to be propagated step-by-step.
Nadi Tomeh Generative Models for NLP 7/2/25 5 / 46

ht as Memory: Markovian Perspective and Short Memory

Hidden State ht as a Memory of the Past
• In an RNN, the hidden state ht ∈ Rm evolves via:

ht = fθ
(
ht−1, xt

)
,

capturing all past inputs {x1, . . . , xt} through a single vector.
• Intuitively, ht serves as the network’s internal memory, summarizing prior context relevant for predicting

future tokens.

Markovian and Geometric Ergodicity
• ht forms a Markov chain in the hidden-space:

p
(
ht | ht−1, ht−2, . . .

)
= p

(
ht | ht−1

)
.

• Under mild contractive conditions on fθ (e.g., Lipschitz constant < 1 in a bounded region), the Markov
chain is geometrically ergodic: For any two initial states h0 and h′

0, we have

‖ht − h′
t‖ ≤ λ t ‖h0 − h′

0‖, for some 0 < λ < 1.

• The result is Exponential Forgetting: The influence of initial states h0 vanishes at a rate λt .
• Short Memory: As t →∞, ht converges to a stationary regime, losing detailed information about very

distant past.
Nadi Tomeh Generative Models for NLP 7/2/25 6 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 7 / 46

Bottleneck of a Single Hidden State ht

Recurrence in a Standard Elman RNN LM
• Hidden state update:

ht = tanh
(
W xh xt + W hh ht−1 + bh

)
.

• Prediction logits:

z t = W hy ht + by , p t = softmax(z t), pθ(wt+1 | w1:t) = p t, wt+1
.

• ht ∈ Rm, xt ∈ Rd , W xh ∈ Rm×d , W hh ∈ Rm×m, W hy ∈ R|V|×m, etc.

The Bottleneck
• ht must encode all relevant history in a single vector of size m.
• As t grows, ht struggles to maintain detailed information about very distant tokens.
• This can degrade the accuracy of z t (the logits) and thus the next-word distribution.

Nadi Tomeh Generative Models for NLP 7/2/25 8 / 46

Storing All Previous Hidden States in Mt

Expandable Memory
• Instead of relying purely on ht , we keep each past hidden state:

Mt = {h1, h2, . . . , ht}.

• Each hτ ∈ Rm can be viewed as an encoding of the input at time τ .
• Mt expands over time, forming a dynamically growing repository of contextual vectors.

Context Vector ct

• We combine the memory vectors in Mt into a single ct ∈ Rm, representing the relevant information from
{h1, . . . , ht}.

• Next, we incorporate ct along with ht to predict:

z t = W cy [ht ; ct] + by , p t = softmax
(
z t
)
.

• Here, [ht ; ct] ∈ R2m is the concatenation; W cy ∈ R|V|×2m.

Nadi Tomeh Generative Models for NLP 7/2/25 9 / 46

Combining the Memory Vectors Mt = {h1, . . . ,ht} into a Context Vector I

Naive Summation or Averaging
• Sum or average:

ct =
t∑

τ=1

hτ or ct =
1

t

t∑
τ=1

hτ .

• All vectors contribute equally, often losing important distinctions among tokens (no weighting).

Hard Selection (One-Hot or Multi-Hot)
• Define a discrete vector αt ∈ {0, 1}t , then:

ct =
1∑t

τ=1 αt,τ

t∑
τ=1

αt,τ hτ .

• One-hot: exactly one entry αt,τ∗ = 1, rest 0.
• Multi-hot: could select multiple hτ simultaneously.
• Non-differentiable w.r.t. αt,τ , complicates gradient-based learning.

Nadi Tomeh Generative Models for NLP 7/2/25 10 / 46

Combining the Memory Vectors Mt = {h1, . . . ,ht} into a Context Vector II

Differentiable Soft Selection
• Let αt,τ ∈ [0, 1] with

∑t
τ=1 αt,τ = 1.

ct = α>
t · ht =

t∑
τ=1

αt,τ hτ .

• ct is a weighted combination of memory vectors, focusing on relevant ones.
• {αt,τ} can be learned end-to-end with backprop.

Nadi Tomeh Generative Models for NLP 7/2/25 11 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 12 / 46

Learning the Weights αt,τ with Attention

Attention as a Similarity-Based Weighting
• We want to find how much each past hidden state hτ (for τ = 1, . . . , t − 1) contributes to the current

context.
• Define a score function et,τ that measures the similarity between ht (the “query”) and hτ (the “key”).

st,τ = sim
(
ht , hτ

)
.

• We then convert these raw scores {et,τ} into attention weights via a softmax:

αt,τ =
exp

(
st,τ

)∑t−1
k=1 exp

(
st,k

) , for τ = 1, . . . , t − 1 This ensures
t−1∑
τ=1

αt,τ = 1.

Context Vector ct Using Learned Weights

ct =

t − 1∑
τ=1

αt,τ hτ .

• The αt,τ are learned dynamically based on the similarity of ht and hτ , focuses on relevant past states.
Nadi Tomeh Generative Models for NLP 7/2/25 13 / 46

Four Common Similarity (Score) Functions I

1. Dot Product

st,τ = h>
t hτ ,

where ht , hτ ∈ Rm.

• Simple and fast; purely linear similarity.
• Works well if the norms ‖ht‖ and ‖hτ‖ are not too large.

2. Scaled Dot Product (Vaswani)

st,τ =
h>

t hτ√
m

,

where again ht , hτ ∈ Rm.
• Dividing by

√
m (the dimension of h) prevents large dot-product values.

• Popular in Transformer architectures.

Nadi Tomeh Generative Models for NLP 7/2/25 14 / 46

Four Common Similarity (Score) Functions II

3. Bilinear (Luong Attention)

st,τ = h>
t W attn hτ , W attn ∈ Rm×m.

• Learns a transformation of hτ before comparing to ht .
• More expressive than a raw dot product, but adds O(m2) parameters.

4. MLP (Additive / Bahdanau Attention)

st,τ = v>
a tanh

(
W a ht + Ua hτ

)
,

where W a,Ua ∈ Rm×m, va ∈ Rm.

• Uses a small neural network for scoring each pair (ht , hτ).
• Potentially more flexible than dot-based approaches, but computationally heavier.

Nadi Tomeh Generative Models for NLP 7/2/25 15 / 46

Extending RNNs to Sequence-to-Sequence Models

Goal: Machine Translation (MT) Example
• Input (source sequence):

(
w src

1 , . . . ,w src
n
)
.

• Output (target sequence):
(
w trg

1 , . . . ,w trg
m

)
.

• We want to learn pθ(w trg
1 , . . . ,w trg

m | w src
1 , . . . ,w src

n), a conditional generative model.

Encoder–Decoder Architecture
• Encoder (RNN): Processes the source tokens into hidden states {henc

1 , . . . , henc
n }.

• Decoder (RNN): Generates target tokens
(
w trg

t
)

one by one, conditioning on the encoder outputs.
• Without attention, the decoder uses only the final encoder hidden state (a single vector) as a context:

hcontext = henc
n .

• Limitation: A single fixed-size vector henc
n must encode the entire source sentence: bottleneck, again.

Nadi Tomeh Generative Models for NLP 7/2/25 16 / 46

Integrating Attention in Seq2Seq (Bahdanau et al.)

Attention Over Encoder Hidden States
• Instead of relying on henc

n alone, maintain a memory of {henc
1 , . . . , henc

n }.
• At each decoder timestep t:

cenc
t =

n∑
τ=1

αt,τ henc
τ , αt,τ =

exp
(
s(hdec

t , henc
τ)

)∑n
k=1 exp

(
s(hdec

t , henc
k)

) ,
where hdec

t ∈ Rm is the current decoder hidden state.
• The αt,τ measure how relevant the encoder’s state henc

τ is at decoding step t.

Context-Augmented Decoder State
• The decoder RNN update can then incorporate cenc

t (plus hdec
t−1, the previous decoder state) to predict:

hdec
t = fθ

(
hdec

t−1, wtrg
t , cenc

t

)
and pθ

(
w trg

t
)
= softmax

(
W hy hdec

t + by

)
.

• Result: A trainable alignment matrix α via attention, letting the model focus on relevant source positions
for each target word.

Nadi Tomeh Generative Models for NLP 7/2/25 17 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 18 / 46

Overview and Motivation

Goal: Autoregressive Language Modeling
• We want a next-token distribution:

pθ(wt+1 | w1, . . . ,wt),

but without RNN recurrence.
• Decoder-Only Transformer: Each token attends to all prior tokens in parallel, using a mask to maintain

causal order.

High-Level Steps (One Layer)
1. Multi-Head Self-Attention (masked).
2. Positional Encodings to inject sequence ordering.
3. Residual + LayerNorm.
4. Feed-Forward Network (FFN) (applied to each token).
5. Another Residual + LayerNorm.

Stacked for L layers, then project to output logits.

Nadi Tomeh Generative Models for NLP 7/2/25 19 / 46

Masked Multi-Head Self-Attention I

Token-by-Token Equations
Setup: We have n tokens, each with embedding x i ∈ Rd , for i = 1, . . . , n.

• Per-token query, key, value:

q i = W Q x i ∈ Rdk , k j = W K x j ∈ Rdk , v j = W V x j ∈ Rdv ,

where W Q ,W K ∈ Rd×dk , W V ∈ Rd×dv .
• Scores and softmax:

si,j =
q>

i k j√
dk

, αi,j =
exp(si,j)∑n

m=1 exp(si,m)
.

• Attention output for token i:

y i =
n∑

j=1

αi,j v j .

Nadi Tomeh Generative Models for NLP 7/2/25 20 / 46

Masked Multi-Head Self-Attention II

Matrix Form Equations (All Tokens in Parallel)
Collect token embeddings x i into matrix X ∈ Rn×d : X = [x>

1 ; . . . ; x>
1].

Q = X W Q ∈ Rn×dk , K = X W K ∈ Rn×dk , V = X W V ∈ Rn×dv .

Attention(Q,K ,V) = softmax
(

Q K>√
dk

)
V , ∈ Rn×dv .

Each row of the result is y>
i , matching the per-token outputs y i from the single-element view.

Nadi Tomeh Generative Models for NLP 7/2/25 21 / 46

Masked Multi-Head Self-Attention III

Masked Self-Attention (Causal LM)
• For autoregressive language modeling, token i must not attend to tokens j > i .
• We add a M ∈ Rn×n:

M[i , j] =
{
0, if j ≤ i ,
−∞, if j > i .

• Then:
Q K> + M softmax−−−−−→ ∈ Rn×n ensures each row i ignores columns j > i .

• Output shape still Rn×dv , but strictly left-to-right in coverage.

Example: n = 4 Tokens

M =


0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0


Token visibility:

• Token #1 sees no preceding tokens (only itself).
• Token #2 sees #1 and itself, but not #3 or #4.
• Etc.

Nadi Tomeh Generative Models for NLP 7/2/25 22 / 46

Masked Multi-Head Self-Attention IV

Multi-Head Extension
• Multiple sets of W Q

i ,W K
i ,W V

i for i = 1, . . . , h.

headi = Attention
(

X W Q
i , X W K

i , X W V
i

)
∈ Rn×dv .

• Concatenate heads:

MultiHead(X) = Concat
(
head1, . . . , headh

)
W O , W O ∈ R(h·dv)×d .

• Why multi-head?
Different heads can specialize: e.g., local vs. distant context, syntactic vs. semantic cues, etc.

Nadi Tomeh Generative Models for NLP 7/2/25 23 / 46

The Problem of Order and the Role of Positional Encodings

Permutation-Invariant Attention
• So far, self-attention alone (without masks or positional info) is inherently permutation-invariant:

– Swapping token i with token j in X just permutes the rows of Q,K ,V , and thus permutes the output as well.
• Why is this a problem?

– A sentence like Cat chases dog conveys a different meaning if tokens are rearranged to Dog chases cat.
– Pure attention sees token embeddings as a set with no inherent notion of “first token,” “second token,” etc.

Positional Encodings: Injecting Order
• We assign each position i a vector PE(i) ∈ Rd .
• Then we add PE(i) to the original token embedding x i :

x′
i = x i + PE(i).

• The model’s self-attention layers now see x′
i , which encodes both the token’s identity and its position.

Learned vs. Sinusoidal
• Learned position embeddings: we maintain a parameter table P ∈ Rnmax×d , so PE(i) is just P [i , :].
• Sinusoidal: uses sines and cosines at different frequencies to represent positions.

Nadi Tomeh Generative Models for NLP 7/2/25 24 / 46

Sinusoidal Positional Encodings I

Formula

PE(pos, 2j) = sin
(

pos
10000 2j/d

)
, PE(pos, 2j + 1) = cos

(
pos

10000 2j/d

)
,

where pos = position index ∈ {0, 1, . . . }, and 2j, 2j + 1 index the even/odd dimensions in Rd .

Why Sinusoids?
• Relative Offsets: PE(pos2)− PE(pos1) can be learned by the model to represent “distance” between

positions.
• Periodicity: The model can exploit trigonometric functions to detect repeating patterns (e.g., rhythmic or

periodic structure).
• No Extra Parameters: These are fixed functions, so no large parameter table is needed.

Nadi Tomeh Generative Models for NLP 7/2/25 25 / 46

Sinusoidal Positional Encodings II

Relative Offsets: Encoding Distance Between Tokens
• The difference between two positional encodings encodes relative position information:

PE(pos2)− PE(pos1) = 2 cos
(pos1 + pos2
2 · 100002j/d

)
sin

(pos2 − pos1
2 · 100002j/d

)
.

• The model can learn to use this difference to infer how far apart two tokens are, rather than relying on
absolute positions.

• This helps generalize to longer sequences beyond those seen in training.

Periodicity: Capturing Repeating Patterns
• The sinusoidal function is periodic, meaning:

sin(x) = sin(x + 2πk), ∀k ∈ Z.

• Different frequency components allow the model to capture:
– Short-range dependencies (small denominator: high frequency).
– Long-range dependencies (large denominator: low frequency).

Nadi Tomeh Generative Models for NLP 7/2/25 26 / 46

Sinusoidal Positional Encodings III

Example: d = 6, pos = 0 . . . 3

• Suppose d = 6. Then half of those (3 dims) are sines (even indices: 0,2,4), half (odd indices: 1,3,5) are
cosines.

• For positions pos = 0, 1, 2, 3, you might get:

PE(0) =



sin(0)
cos(0)

sin(0/100001/3)
cos(0/100001/3)
sin(0/100002/3)
cos(0/100002/3)

 =


0
1
0
1
0
1

 .

• For pos = 1, these become small angles in some coordinates; for pos = 2, 3, the angles grow accordingly.

Nadi Tomeh Generative Models for NLP 7/2/25 27 / 46

Residual + Layer Normalization I

Residual Connections
• Let Z = (Multi-Head Attn or FFN output) ∈ Rn×d , then the output becomes:

X ′ = X + Z .

• Better gradient flow: The gradient can “skip” sub-layers if needed, preventing severe vanishing/exploding
issues in deep networks.

• Stabilizes training: Each sub-layer only needs to learn a “residual” function around the identity. In practice,
deeper models converge faster and more reliably.

Nadi Tomeh Generative Models for NLP 7/2/25 28 / 46

Residual + Layer Normalization II

LayerNorm

LayerNorm(x) = x − µ(x)
σ(x) � γ + β, x ∈ Rd .

• µ(x) = 1
d
∑d

i=1 xi is the mean of x.

• σ(x) =
√

1
d
∑d

i=1(xi − µ(x))2 is the standard deviation of x.

• γ,β ∈ Rd are learned scale and shift parameters.
• Helps maintain stable activations across tokens and layers.

Application within a Block
• Each Transformer sub-layer (Multi-Head Attention or FFN) is wrapped with:

X ← LayerNorm(X + subLayer(X)).

• Residual connections allow deeper networks by letting gradients bypass sub-layers if needed.
• LayerNorm ensures each token’s feature dimension remains stable in mean and variance.

Nadi Tomeh Generative Models for NLP 7/2/25 29 / 46

Position-Wise Feed-Forward Network (FFN)

Position-Wise MLP
Definition: For each token embedding x ∈ Rd , we apply a 2-layer feed-forward transformation:

FFN(x) = max
(
0, x W 1 + b1

)
W 2 + b2,

where:
• W 1 ∈ Rd×dff , W 2 ∈ Rdff×d .
• b1 ∈ Rdff , b2 ∈ Rd .

• Typically dff > d; e.g. dff = 2048 and d = 512, called bottleneck → expansion → projection” structure.

Shape & Per-Token Independence
• Input to FFN layer: H ∈ Rn×d , where n is the number of tokens.
• We apply FFN row by row, i.e. each hi ∈ Rd (the i-th token’s vector) is mapped to another h′

i ∈ Rd .
• max(0, ·) is the ReLU nonlinearity.
• This is called position-wise because each token’s position is processed independently, ignoring any

cross-token interaction in this sub-layer.

Nadi Tomeh Generative Models for NLP 7/2/25 30 / 46

Putting It All Together: Composing Transformer Sublayers for LM I

Layer Composition in a Decoder Block
• Let the input to the first layer be

X(0) = X + PE ∈ Rn×d ,

where X ∈ Rn×d are token embeddings and PE ∈ Rn×d are positional encodings.
• Each decoder layer l (for l = 1, . . . , L) is a composition of sublayers:

X(l) = LayerNorm
(

X(l−1) + FFN
(

LayerNorm
(
X(l−1) + MaskedMHA(X(l−1))

)))
.

Nadi Tomeh Generative Models for NLP 7/2/25 31 / 46

Putting It All Together: Composing Transformer Sublayers for LM II

Output Projection to Vocabulary Distribution
• After L layers, we obtain final representations:

Y = X(L) ∈ Rn×d .

• For each token (row) y i ∈ Rd in Y , compute logits:

z i = y i W out + bout, W out ∈ Rd×|V|, bout ∈ R|V|.

• Apply softmax to obtain the next-token probability distribution:

pθ

(
wi | w1, . . . ,wi−1

)
= p i = softmax(z i) ∈ R|V|.

Nadi Tomeh Generative Models for NLP 7/2/25 32 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 33 / 46

Training Transformers: Essential Points and Equations I

Training Objective
• For language modeling, minimize cross-entropy loss:

L(θ) = −
n∑

i=1

log pθ

(
wi+1

∣∣w1, . . . ,wi
)
,

where pθ(wi+1 | w1, . . . ,wi) is computed via a softmax over logits.

Optimizer and Learning Rate Schedule
• Optimizer: Adam/AdamW is used for adaptive moment estimation.
• Learning Rate: A warmup phase followed by inverse square-root decay:

ηt = d−0.5
model ·min

(
t−0.5, t τ−1.5

)
,

where τ is the warmup period (steps) and dmodel is the model dimension.

Nadi Tomeh Generative Models for NLP 7/2/25 34 / 46

Training Transformers: Essential Points and Equations II

Dropout
• For an activation vector z ∈ Rd , dropout applies a mask m ∈ {0, 1}d with

mi ∼ Bernoulli(p),

and outputs
z̃ =

z �m
p .

• Applied in attention, FFN, and residual connections to reduce overfitting.

Nadi Tomeh Generative Models for NLP 7/2/25 35 / 46

Training Transformers: Essential Points and Equations III

Label Smoothing
• Instead of a one-hot target, assign a smoothed target distribution:

q(k) =
{
1− ε, if k = k∗,

ε
|V|−1

, if k 6= k∗,

where k∗ is the correct token, |V| is the vocabulary size, and ε is a small constant (e.g., 0.1).
• Helps prevent overconfidence and improves generalization.

Gradient Clipping
• To stabilize training, clip gradients:

∇θL ← ∇θL ·min
(
1,

c
‖∇θL‖

)
,

where c is the clipping threshold.

Nadi Tomeh Generative Models for NLP 7/2/25 36 / 46

Why Transformers Train Efficiently on GPUs

Parallelizable Operations
• Matrix Multiplications: All sublayers (multi-head self-attention, feed-forward networks) involve large matrix

multiplications that are highly optimized on GPUs.
• Teacher Forcing in Training: When training with teacher forcing, the target sequence is known. ⇒ Losses

for all positions are computed simultaneously by arranging tokens in tensors.
• No Recurrence: Unlike RNNs, Transformers do not require sequential updates over time steps. This allows

all token positions to be processed in parallel.

Illustration: Parallel Loss Computation
• Suppose we have a batch of B sequences, each of length n. All token embeddings are stored in a tensor

X ∈ RB×n×d .
• The Transformer computes outputs Y ∈ RB×n×d in parallel for every position.
• The predicted logits Z ∈ RB×n×|V| are computed via:

Z = Y W out + bout,

and the cross-entropy loss is computed over all positions simultaneously.

Nadi Tomeh Generative Models for NLP 7/2/25 37 / 46

Computational Complexity: Transformer vs. RNN I

Transformer Training Complexity
• Parallel Processing:

– The entire input sequence of n tokens (batch size B) is processed simultaneously.
– Token embeddings are arranged in a tensor: X ∈ RB×n×d .

• Self-Attention Computations:
– For each layer, self-attention requires computing the matrix product Q K> with cost:

O
(

B · n2 · dk
)
,

where Q,K ∈ RB×n×dk .
– Additional matrix multiplications (e.g., with V) also scale similarly.

• Overall Training:
– Although self-attention has a quadratic dependency in n, modern GPUs/TPUs perform these large matrix

multiplications in parallel.
– Backpropagation is applied concurrently over all tokens, making training efficient even for long sequences.

Nadi Tomeh Generative Models for NLP 7/2/25 38 / 46

Computational Complexity: Transformer vs. RNN II

RNN Training Complexity
• Sequential Processing:

– An RNN processes tokens one by one, unrolling over n time steps.
– The input is processed as a sequence: {x1, x2, . . . , xn} with recurrence.

• Per-Step Cost:
– Each time step involves computing:

ht = fθ(ht−1, xt),

with cost O(f (d)) per step.
• Overall Training:

– Total cost per sequence: O
(
n · f (d)

)
.

– Gradients are propagated sequentially via BPTT, limiting parallelization.

Transformer Inference Complexity
• Autoregressive Generation: Inference is inherently sequential as each token depends on previously

generated tokens: this requires O(t2) operations (for a sequence of length t).
• Caching Mechanism: Previously computed key and value matrices are cached to avoid redundant

computations.

Nadi Tomeh Generative Models for NLP 7/2/25 39 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 40 / 46

Pretraining and Fine-Tuning: Technical Setup I

Pretraining Stage (Unsupervised)
• Objective: Learn general language representations from large-scale, unlabeled corpora.
• Common Pretraining Objectives:

– Causal Language Modeling (e.g., GPT-style):

LLM(θ) = −
n∑

i=1

log pθ

(
wi+1

∣∣w1, . . . ,wi
)
,

where pθ(wi+1 | w1, . . . ,wi) is computed via softmax over vocabulary logits.
– Masked Language Modeling (e.g., BERT-style):

LMLM(θ) = −
∑
i∈M

log pθ

(
wi

∣∣ w̃
)
,

where M is the set of masked token positions and w̃ denotes the input sequence with masks applied.
• Input: A large corpus of text.
• Architecture: A Transformer (decoder-only for GPT, encoder-only for BERT, or full encoder–decoder for

models like T5) with parameters θ shared across all layers.

Nadi Tomeh Generative Models for NLP 7/2/25 41 / 46

Pretraining and Fine-Tuning: Technical Setup II

Fine-Tuning Stage (Supervised)
• Objective: Adapt the pretrained Transformer to a downstream task (e.g., text classification, translation,

question answering) using a labeled dataset.
• Task-Specific Head:

– For classification, add a linear layer with parameters W cls ∈ Rd×C and bias bcls ∈ RC , where C is the number of
classes.

ŷ = softmax
(

y W cls + bcls
)
,

with y being the final hidden state (often corresponding to a special [CLS] token).
– For translation, the encoder–decoder architecture is used and cross-attention is added; the loss remains

cross-entropy on the target sequence.
• Fine-Tuning Loss: Typically, a supervised cross-entropy loss is used:

LFT(θ,θhead) = −
∑

i

log pθ,θhead

(
yi
∣∣ xi

)
,

where xi is the input and yi is the target label.
• Parameters θ are initialized from the pretrained model.
• The task-specific head parameters θhead are initialized randomly.

Nadi Tomeh Generative Models for NLP 7/2/25 42 / 46

Outline

• Recap and Motivation

• Expanding RNN Memory Beyond a Single Hidden State

• Attention Mechanisms

• Transformer Architecture for Language Modeling

• Training Transformer Models

• Pretraining and Fine-Tuning Transformers

• Transformer Setup Variants: GPT, Full Transformer, and BERT

Nadi Tomeh Generative Models for NLP 7/2/25 43 / 46

Three Transformer Setups I

Decoder-Only Transformers: GPT Family
• Architecture:

– Uses a decoder-only Transformer with masked self-attention.
– Input: a sequence of token embeddings X ∈ Rn×d (with positional encodings added).
– Mask: Enforces causal (left-to-right) attention:

Attention(Q,K ,V) = softmax
(Q K> + M

√
dk

)
V ,

where M[i, j] = 0 for j ≤ i and −∞ for j > i.
• Objective: Autoregressive language modeling.

LLM(θ) = −
n∑

i=1

log pθ

(
wi+1 | w1, . . . ,wi

)
.

• Key Points:
– All computations are parallelizable over sequence positions, except for the causal masking.
– Suitable for large-scale pretraining and text generation.

Nadi Tomeh Generative Models for NLP 7/2/25 44 / 46

Three Transformer Setups II

Full Transformer (Encoder–Decoder)
• Architecture:

– Consists of an Encoder and a Decoder.
– Encoder: Processes source sequence Xsrc ∈ Rn×d with self-attention (unmasked).
– Decoder: Processes target sequence Xtrg ∈ Rm×d with masked self-attention, and attends to encoder outputs

via cross-attention.
– Encoder and decoder stacks are each built from residual-connected layers of multi-head self-attention and FFN.

• Objective: Sequence-to-sequence learning (e.g., for translation):

Lseq2seq(θ) = −
m∑

i=1

log pθ

(
w trg

i

∣∣∣w trg
1 , . . . ,w trg

i−1,H
enc

)
.

where Henc are the encoder outputs.
• Enables contextualized encoding of the source and dynamic alignment during decoding.
• Widely used for tasks like machine translation and summarization.

Nadi Tomeh Generative Models for NLP 7/2/25 45 / 46

Three Transformer Setups III

Encoder-Only Transformers: BERT
• Architecture:

– Uses only the encoder part of the Transformer.
– Processes a full input sequence X ∈ Rn×d with self-attention (unmasked).
– Positional encodings are added to maintain token order.

• Pretraining Objectives:
– Masked Language Modeling (MLM): Randomly mask some tokens and predict them.

LMLM(θ) = −
∑
i∈M

log pθ

(
wi | w̃

)
,

where M is the set of masked token indices.
• Fine-Tuning: Adapt the pretrained encoder for downstream tasks (e.g., classification, question answering)

by adding a task-specific head.

Nadi Tomeh Generative Models for NLP 7/2/25 46 / 46

	Recap and Motivation
	Expanding RNN Memory Beyond a Single Hidden State
	Attention Mechanisms
	Transformer Architecture for Language Modeling
	Training Transformer Models
	Pretraining and Fine-Tuning Transformers
	Transformer Setup Variants: GPT, Full Transformer, and BERT

