

Generative Models for NLP

Introduction and Word Embeddings

Joseph Le Roux

30/12/25

Outline

- Introduction
- Word Vectors
- Wor2dVec
- Complements
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

- **Introduction**
- Word Vectors
- Wor2dVec
- Complements
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

Various tasks that *process data encoded in natural language (NL)*

speech recognition, text classification, NL understanding, and NL generation...

At the crossroad of :

- Linguistics
- Computer Science (formal languages, automata, graphs...)
- Logic
- Machine Learning (probability/optimization/statistics)
- Artificial Intelligence
- Cognitive Sciences

Language

a system that allows a speaker (writer) to communicate (among other functions)

Elements of this system are **discrete** (symbols)

- speech/gestures/writings are transcriptions of this system
- if continuous, no writing system (discretization) possible without major loss of meaning

Problems for Machine Learning

- Requires many different symbols, some very frequent some very rare
- Discrete units make gradient descent impractical

Why it's difficult

Ambiguity at all levels

- *saw, duck, her, round, like*, (lexical amb. of words)
- *I saw her duck* (lexical amb. in context)
- *John eats a pizza with a fork* vs. *John eats a pizza with an egg* (syntactic amb., attachment)
- *A computer that understands you like your mother* (amb. syntaxique, rattachement)
- *I seek a unicorn* (semantic amb. existential quantification)
- *avocat pourri* → *dirty lawyer, rotten avocado* (expressions and translation)

Yes but... we understand each other!

- Context may help, but how?
- world knowledge, social convention, statistics may also help
- other modalities (vision, touch...)

Great variability

sometimes very ambiguous... in general simple (simple enough for humans to learn!)

What we will discuss this year

Session 1: Word Embeddings

<2026-01-09 Fri>

- What are the units? how do we represent them?

Session 2: Language Models

<2026-01-16 Fri>

- How do we represent words in context
- How can we represent sequences and generate texts

Session 3: RNN/Transformers and Attention

<2026-01-23 Fri>

- Attention mechanism

Session 4: Fine-tuning LLMs with RLHF and DPO

<2026-01-30 Fri>

- How to incorporate application preferences in LLMs

Session 5: Latent Variable Models for text: Diffusion Language Models

- Introduction
- Word Vectors
- Wor2dVec
- Complements
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

Definitions

- word (token) = atomic element : *dog, car, the, Trump ...*
 - 🤔 what about letters?
- Vocabulary V finite set of all accepted words
- add a *special token* UNK
 - representing all the things in texts that are not words (*ie qwerw3y*)
 - representing all the words that may be missing in V
- Lexicon L_V finite set of words or UNK : $L_V = V \cup \{\text{UNK}\}$
- Language \mathcal{L}_V is the set of strings on the lexicon $\mathcal{L}_V^* = \bigcup_{i=0}^{\infty} L_V^i = \{\varepsilon\} \cup L \cup LL \cup \dots$
- To each element of the lexicon L corresponds a unique integer, its *index*, between 0 (for UNK) and $|V|$.

Word sense – Word meaning

Fundamental issue in NLP: assign a meaning to words

Different point of views:

- Linguistics: link *signifier* (sound/writing) and the *signified* (the thing/the meaning)
 - not really mechanizable
- Ontology (data/knowledge base): organize a hierarchy of concepts and terms on a semantic basis
 - do not really say anything about usage (how to use words)
- CS/NLP: pragmatic approach, meaning depends on context defined by application
 - EX: if a vocal assistant must perform the same when user says *play the Beatles* or *put the Beatles on* or *read the Beatles*, in this context *play, read, put on* must have the same meaning/representation
 - Moreover their meaning is to *launch the player*

Multi-dimensional representation (word vectors)

Assume contexts are countable (and sparse)

Then, if meaning depends on context, and if context can change, we can **represent words as vectors** with one dimension by context.

Synonymy between two words

- Compute *distance / inner product* between their vectors.
- *Partial* synonyms, depend on contexts
- **Geometrical Meaning!**

Geometrical Meaning

- Represent words in dense vectors \mathbb{R}^d
- Distance/similarity interpreted as semantic relatedness (eg synonyms)

Eg. assuming that *play* and *launch* are closer semantically than *play* and *clean*, we have:

$$\|V(\text{play}) - V(\text{launch})\|_2^2 \leq \|V(\text{play}) - V(\text{clean})\|_2^2$$

Very different representations in NLP/CL!

Lexicon elements **used to** be considered as unique by default. Equivalently, they were represented by *one-hot* vectors in $\{0, 1\}^{|Lv|}$. For instance:

play	[000000000010000000]
read	[00100000000000000000]
stop	[00000000000000000000100]

All tokens were orthogonal, (inner product zero, distance $\sqrt{2}$), whether they had the same meaning or not. **Geometry meant nothing**

Contextual (or Distributional) Representation

Contexts as neighbouring words

You shall know a word by the company it keeps. (J. R. Firth, 1957)

An old idea in linguistics, used in NLP since 90s/00s

The meaning of a word can be inferred from its *usage*, therefore from the sequence of token in which it appears.

A word is represented by a set of contexts

Example

For instance for *théorie* in a French text corpus:

... Ezion qui le mettaient en **théorie** à l' abri de soucis ...
... essais assez pointus sur une **théorie** mathématique quelques articles réunis trois ...
... poète météo dépendant pas de **théorie** .

théorie = { ... Ezion qui le mettaient en, à l' abri de soucis . . . , . . . essais assez pointus sur une, mathématique quelques articles réunis trois . . . , . . . }

Observation

- The more contexts 2 words have in common, the more they share meaning.
- This is not scalable → contexts must be compressed

Vector similarity is the only information present in Word Space: semantically related words are close, unrelated words are distant. (H. Schütze, 1993)

In the 90s several methods appear, based on word co-occurrences, with dimension reduction for efficiency and densification.

Big Picture

1. Associate each lexicon elt e to a vector count v_e of length $|L_V|$, initialized to zero
2. From a set of documents
 - count $n_{e,e'}$ for each lexelt e , the number each e' occurs in the neighbourhood of e
 - filter: discard tokens such as *a, the...*, limit to a window of k tokens around e ,
 - set $v_e[id(e')] = n_{e,e'}$
3. Concatenate all vectors $v_e, \forall e$ into a co-occurrence matrix M
 - perform some normalization (eg TF/IDF or a variant)
4. M is big and sparse
 - use (Truncated) Singular Value Decomposition to get matrix M'
 - such as M'_e is a dense vector of dimension $d \ll |L_V|$

Usage

To decide whether two words are similar semantically, DR usually uses *normalized inner product* also called *cosine similarity*:

$$\text{sim}(x, y) = \frac{\sum_i x_i y_i}{\sqrt{\sum_i x_i^2} \sqrt{\sum_i y_i^2}} = \frac{x \cdot y}{(\sqrt{x^2})(\sqrt{y^2})} = \frac{\langle x, y \rangle}{|x| \times |y|}$$

(🤔 what are the min/max values of *sim*)

Issues with distributional approach

- normalisation, scaling → compression (matrix dimension reduction)
- not incremental → need to retrain from scratch for new data

- Introduction
- Word Vectors
- **Wor2dVec**
- Complements
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

Word2Vec (2)

Algorithm to parametrize word vectors

- implements Firth's principle, related to SVD methods (1)
- simple idea (but implementation may be *tricky*)

Not a *Neural Network* but

- the resulting vectors will be used as input by NNs later
- learning performed via gradient descent
- probabilistic modelling (and approximation)

A little old...

- More powerful recent methods
- ... but Word2Vec is simple and implements Firth's idea quite directly

Principle

1. Assume we have a corpus of texts (big, $>1M$ words) for training;
2. We set vocabulary V , out of vocabulary (OOV) words are replaced by token UNK;
3. At each position t of a text, we write token c at position t and its neighbouring tokens O_c (words in a window of size m around t). We assume a factorized probability to generate neighbouring tokens: $p(O_c|c; \theta) = \prod_{o \in O_c} p(o|c; \theta)$
4. From the computation of similarity between center word vector v_c and context word vectors v_o , we will define probability $p_\theta(o|c)$;
5. Training objective: maximize parameters for likelihood: $\prod_c p(O_c|c; \theta)$.

Loss

Maximizing the log-likelihood amounts to the following loss:

$$\begin{aligned} \max_{\theta} \log \prod_t \prod_{o \in O_t} p(o|c_t; \theta) &= \max_{\theta} \sum_t \sum_{o \in O_t} \log p(o|c_t; \theta) \\ &= \min_{\theta} \sum_t \sum_{o \in O_t} -\log p(o|c_t; \theta) \end{aligned}$$

Window

- Given a position t in text, we write w_t , the token at this position
- A window of size m centered at position t , noted O_t consists of all words $w_i, \forall (t - m) \leq i \leq (t + m)$

Word2vec defines probability distributions

- Probability for all words w' to be in a window (of predefined size m) of a specific word w
- In the remainder, we call $p(w'|w)$ *neighbourhood probability*

Example



Word2vec : Maximum Likelihood Estimation (MLE)

General method to cast a ML problem (eg optimized by SGD) into a probabilistic framework.
Probabilities are computed from scores given by a network with parameters θ

Definition (Likelihood)

A function returning a corpus probability (assume iid observations) from given parameters:

$$V(\theta) = \prod_{t \in \mathcal{T}} p(O_t | w_t; \theta) = \prod_{t \in \mathcal{T}} \prod_{t-m \leq j \leq t+m} p(w_j | w_t; \theta)$$

Intuition

Observations must be more probable than any event that we did not observe, and because observations *happened* they must have a probability 1. We want to *maximize* V :

$$\theta^* = \arg \max_{\theta} V(\theta) = \arg \max_{\theta} \prod_t \prod_{t-m \leq j \leq t+m} p(w_j | w_t; \theta)$$

Product → Sum

$V(\theta)$ is a product: difficult to optimize. \log is monotone so we can write:

$$\theta^* = \arg \max_{\theta} \log V(\theta) = \arg \max_{\theta} \sum_t \sum_{t-m \leq j \leq t+m} \log p(w_j | w_t; \theta)$$

Minimization

We prefer minimizing a loss function:

$$\theta^* = \arg \min_{\theta} -\log V(\theta) = \arg \min_{\theta} \sum_t \sum_{t-m \leq j \leq t+m} -\log p(w_j | w_t; \theta)$$

Finally $-\log V(\theta)$ is a loss function

- positive
- zero when no error

Similarity between words

- We want to measure similarity between token w_t et context token w_o
- Similarity of their associated vectors \rightarrow inner product
- Issue with inner product: $v_1^\top v_2$ is maximal when $v_1 = v_2$. we want to avoid trivial solution: $v_i = v_j \forall i, j$
- Solution: define 2 vectors per token mot m :
 1. v_m when m is the center position of the window
 2. u_m when m is a context position in the window.

From similarity to probability

- in $p(w'|w)$, use inner product $u_w^\top v_w$
- we use **softmax**:
for a vector $a = [a_1 \dots a_n]$ softmax return a vector:

$$\text{softmax}(a)[i] = \frac{\exp(a[i])}{\sum_j \exp(a[j])}$$

Inner product + softmax =

$$p(w'|w) = \frac{\exp(u_w^\top v_w)}{\sum_{w''} \exp(u_{w''}^\top v_w)}$$

Softmax implements the idea that the more context w' is similar to center w , that the higher $u_w^\top v_w$ the more probable it is to appear in a window.

How to implement?

First implementation

In lab, you will code an efficient batched version

```
import torch

class Word2Vec(torch.nn.Module):
    def __init__(self, corpus, lexicon_size, vec_size):

        # 2 tables to define from data:
        #word2idx table token -> index
        #idx2word table index -> token

        U = torch.nn.Embedding(lexicon_size, vec_size)
        V = torch.nn.Embedding(lexicon_size, vec_size)

    # returns the sim. score for all token as contexts of w_c
    def forward(self, idx_c):
        # inner product with all vectors in U
        logits = self.U.weight @ self.V(idx_c)
        return logits
```

First implementation (2)

```
import torch

def train(net, opt, train_set, nb_epoch):

    loss_fn = torch.nn.CrossEntropyLoss()
    # to adapt for lab sessions
    # to deal with batched input
    for epoch in range(nb_epoch):
        train_set.shuffle()
        for (o,c) in train_set:
            logits = net(c)
            loss = loss_fn(logits, o)
            loss.backward()
            opt.step()
            opt.zero_grad()

w2v = Word2Vec(corpus, 10000, 20)
# TODO: conversion between data and training set
#optimizer = ...
train(w2v, optimizer, train_set, 20)
```

Some issues with this version

Softmax on vocabulary

$$p(w'|w) = \frac{\exp(u_w^\top v_w)}{\sum_{w''} \exp(u_{w''}^\top v_w)}$$

Will not scale for large vocabularies:

- complexity (time/memory) (denominator)
- rounding errors

In the *real* Word2vec

- many modifications to improve efficiency
- less rounding errors

Coming up next:

- a better implementation
- interpretation/explanation of the implementation
- beaucoup d'équations

- Introduction
- Word Vectors
- Wor2dVec
- **Complements**
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

In Pytorch learning with MLE uses a function called *cross entropy* 🤔

Definition (Entropy of a distribution)

a measure of the *randomness* of a distribution

$$H(p) = - \sum_{c \in \mathcal{C}} p(c) \log p(c)$$

- $H(c) \geq 0$
- If p uniform (ie random) $H(p) = \log(|\mathcal{C}|)$
- If p deterministic ($p(c_i) = 1$), $H(p) = 0$

MLE and Cross Entropy (2)

Definition (Conditional Entropy / Cross Entropy)

Allows to compute a kind of *distance* between 2 distribution 🤔

$$\text{CE}(q, p) = - \sum_c q(c) \log p(c)$$

Definition (Empirical distribution p_e)

- *distribution* of observed data $s = c_i$ always 0/1
- for a multinomial, if for $p_e(c_i) = 1$ then $\forall j \neq i, p(c_j) = 0$
- (generalizes to mean for several examples)

Equivalence

Let us compute the cross-entropy between:

- q the empirical distribution
- p the distribution computed by our model

MLE and Cross Entropy (3)

$$\begin{aligned} \mathbb{H}(q, p) &= - \sum_c q(c) \log p(c) \\ &= - q(c_i) \log p(c_i) - \sum_{c \neq c_i} q(c) \log p(c) \\ &= - 1 \times \log p(c_i) - \sum_{c \neq c_i} 0 \times \log p(c) \\ \mathbb{H}(q, p) &= - \log p(c_i) \end{aligned}$$

We recover $-\log p(x)$, the loss we defined for MLE

Cross-Entropy in Pytorch (1)

```
# classifier for input of size 10, 5 classes
# 8 hidden neurons (cf. DATA MINING)
net = MLP(10,[8],5)

# let us pretend the following tensor contains
# the input for 3 examples
inputs = torch.rand(3,10)

# we obtain the 5 scores for all 3 examples
preds = net(inputs)

# let us suppose that the correct classes were:
empirical = torch.tensor([0,2,1], dtype=torch.long)

loss_function = torch.nn.CrossEntropyLoss()

# note that we do not compute log softmax (inside CE)
loss = loss_function(preds, empirical)

loss.backward() # and the rest...
```

Cross-Entropy in Pytorch (2)

After training, prediction:

```
# let us pretend the following tensor contains
# the input for 3 examples
inputs = ...

# we obtain the 5 scores for all 3 examples
predictionss = net(inputs)

#apply the argmax for each line:
outputs = torch.argmax(predictionss, dim=1)
```

pas de *cross-entropy*, pas de *softmax* : pourquoi ?

- Introduction
- Word Vectors
- Wor2dVec
- Complements
- **From MLE to Contrastive Learning**
- Relation MLE / Contrastive
- The End

Constrastive Sampling Approach of Mikolov et al. (1)

Softmax inefficient → alternative method to train word vectors.

From *word* probability to *class* probability

Define probability $p(D = d|w', w)$ for 2 classes d :

- $d = 1$ if w' is a word that belongs to a possible context for w
- $d = 0$ otherwise
- of course we have: $p(D = 0|w', w) = 1 - p(D = 1|w', w)$

How to model binomial distribution? (2 classes)

- softmax possible but...
- sigmoid more *natural* $\sigma(x) = \frac{1}{1+\exp(-x)}$
- combine sigmoid and similarity:

$$p(D = 1|w', w) = \frac{1}{1 + \exp(-u_{w'} \cdot v_w)}$$

What we want to do

- train vector for tokens from a corpus organised in sentences...
- ... by using a loss function that involves a *similarity* between word vectors
- efficient: we want to avoid iterating through the lexicon

Maximum Likelihood Estimation

For each position t in the training corpus:

- we want to correctly classify (w', w_t) (to 0 or 1) for all w'
- we write $k(c, w)$ the class of context candidate c for token w (set to 0 or 1) in the training set. MLE amounts to:

$$\theta^* = \max_{\theta} \sum_t \mathbb{E}_{w \sim P_{w_t}(\cdot)} [\log p(D = k(w, w_t) | w, w_t)]$$

Constrastive Sampling Approach of Mikolov et al. (3)

Maximum Likelihood Estimation: Decompose on positive/negative class expectations:

$$\theta^* = \max_{\theta} \sum_t \mathbb{E}_{w \sim P_{w_t}(\cdot)} [\log p(D = k(w, w_t) | w, w_t)] \quad (1)$$

$$= \max_{\theta} \sum_t \sum_w P_{w_t}(w) \log p(D = k(w, w_t) | w, w_t) \quad (2)$$

$$= \max_{\theta} \sum_t \sum_w \sum_{i=0}^1 P(D = i) \times P_{w_t}(w | D = i) \log p(D = k(w, w_t) | w, w_t) \quad (3)$$

$$= \max_{\theta} \sum_t \sum_{i=0}^1 \sum_w P(D = i) \times P_{w_t}(w | D = i) \log p(D = k(w, w_t) | w, w_t) \quad (4)$$

$$= \max_{\theta} \sum_t \sum_{i=0}^1 P(D = i) \sum_w P_{w_t}(w | D = i) \log p(D = k(w, w_t) | w, w_t) \quad (5)$$

$$= \max_{\theta} \sum_t \sum_{i=0}^1 P(D = i) \mathbb{E}_{w \sim P_{w_t}^i(\cdot)} [\log p(D = k(w, w_t) | w, w_t)] \quad (6)$$

$$= \max_{\theta} \sum_t \sum_{i=0}^1 P(D = i) \mathbb{E}_{w \sim P_{w_t}^i(\cdot)} [\log p(D = i | w, w_t)] \quad \text{why ? } \text{💡} \quad (7)$$

Constrastive Sampling Approach of Mikolov et al. (4)

Add the following assumptions:

There are more negative examples than positive examples

- $\exists \kappa = 1, 2, \dots, N$ such that $P^-(D = 0) = \kappa \times P^+(D = 1)$
- in other words, the negative class is κ times more likely than the positive class

Expectations can be approximated by sampling efficiently (Monte-Carlo!)

For a position t , we want to maximize:

$$\mathbb{E}_{w \sim P_t^1(\cdot)} [\log p(D = 1|w, w_t)] + \kappa \mathbb{E}_{w \sim P_t^0(\cdot)} [\log p(D = 0|w, w_t)]$$

Expectations \rightarrow Sampling:

$$\log p(D = 1|w^+, w_t) + \sum_{i=1}^{\kappa} \log p(D = 0|w^{-i}, w_t)$$

- w^+ drawn randomly from distribution $P_{w_c}^+$
- w^{-i} drawn randomly from distribution $P_{w_c}^-$

Constrastive Sampling Approach of Mikolov et al. (5)

We also need to define distributions P^+ et P^-

For the positive class

draw randomly a token from the window around position t

$$P_t^+(w) = \begin{cases} \frac{1}{|O_t|} & \text{if } w \in O_t, \\ 0 & \text{otherwise} \end{cases}$$

For the negative class

Use the frequency of a word in training set as probability:

$$P_t^-(w) = \frac{\#w}{\sum_{w'} \#w'} = f(w)$$

In Mikolov's implementation, use a *flattened* version:

$$P_t^-(w) = \frac{\#w^{\frac{3}{4}}}{\sum_{w'} \#w'^{\frac{3}{4}}}$$

Finally we obtain the Mikolov's loss:

$$\max \sum_t \left(\log \sigma(u_{w+} \cdot v_{w_t}) + \sum_{i=1}^{\kappa} \log \sigma(-u_{w-i} \cdot v_{w_t}) \right)$$

- This is a maximization: we get the loss function by multiplying by -1

A small trick to get a better model:

Subsampling

Do not take into account all the words in the training set:

- remove **all** words that appear less than n times (set $n = 2, 3, 4, 5 \dots$)
- remove **at random** very frequent words in contexts. For each token w in the lexicon, eliminate w from O_t with probability:

$$P_d(w) = \text{ReLU}\left(1 - \sqrt{\frac{t}{f(w)}}\right)$$

with $t = 10^{-5}$

- in words, words with frequency equal to or above t are always discarded.
- beware** if we remove a word from context O_t , we still have to keep the size of the window ($2m$): need to extend window boundaries

- Introduction
- Word Vectors
- Wor2dVec
- Complements
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

Another way to look at contrastive estimation of word vectors

- a series of approximations/assumptions from the MLE model
- sheds new light on the relation between the two

From Definition to Implementation: Gradient

Let us derive the gradient for one example:

$$\begin{aligned}\nabla L(\theta; w', w) &= \nabla - \log p(w' | w; \theta) = \nabla - \log \frac{\exp(u_{w'}^\top v_w)}{\sum_{w''} \exp(u_{w''}^\top v_w)} \\ &= \nabla \left(\log \left(\sum_{w''} \exp(u_{w''}^\top v_w) \right) - u_{w'}^\top v_w \right) \\ &= \nabla \left(\log \left(\sum_{w''} \exp(u_{w''}^\top v_w) \right) \right) - \nabla (u_{w'}^\top v_w) \\ &= \frac{\nabla \sum_{w''} \exp(u_{w''}^\top v_w)}{\sum_{w''} \exp(u_{w''}^\top v_w)} - \nabla u_{w'}^\top v_w \\ &= \frac{\sum_{w''} \nabla \exp(u_{w''}^\top v_w)}{\sum_{w''} \exp(u_{w''}^\top v_w)} - \nabla u_{w'}^\top v_w \\ &= \frac{\sum_{w''} \exp(u_{w''}^\top v_w) \nabla u_{w''}^\top v_w}{\sum_{w''} \exp(u_{w''}^\top v_w)} - \nabla u_{w'}^\top v_w \\ &= \sum_{w''} p(w'' | w; \theta) \nabla u_{w''}^\top v_w - \nabla u_{w'}^\top v_w \\ &= \mathbb{E}_{w'' \sim p(\cdot | w; \theta)} [\nabla u_{w''}^\top v_w] - \nabla u_{w'}^\top v_w\end{aligned}$$

From Definition to Implementation: A New Objective

Recap: we want $\nabla L(\theta; w', w) = 0$

- equivalently: $\mathbb{E}_{w'' \sim p(\cdot|w; \theta)} [\nabla u_{w''}^\top v_w] - \nabla u_w^\top v_w = 0$
- But this gradient is also the gradient of:

$$F(\theta; w', w) = \mathbb{E}_{w'' \sim \widehat{p(\cdot|w; \theta)}} [u_{w''}^\top v_w] - u_w^\top v_w$$

- where \widehat{x} means x is considered a constant (null gradient)

Conclusion We can learn with F instead of L (they have the same solution)

Wait... we still have to iterate over all words (expectation)

- Idea: sample only a few words, not all the lexicon

$$\text{With } w_k \sim p(\cdot|w; \theta) : \quad F(\theta; w', w) \approx \frac{1}{K} \sum_{k=1}^K [u_{w_k}^\top v_w] - u_w^\top v_w$$

with w_k sampled from p

With $w_k \sim p(\cdot|w; \theta)$:

$$F(\theta; w', w) \approx \frac{1}{K} \sum_{k=1}^K [u_{w_k}^\top v_w] - u_{w'}^\top v_w$$

Problems when sampling with p

To sample with p , we need to compute the denominator and iterate over the lexicon...

Solution

- Find an efficient approximation to $p(\cdot|.; \theta)$
- `word2vec` uses the frequency of words in training corpus

$$P_u(w) = \frac{\#w}{\sum_{w'} \#w'}$$

- or a flattened version

$$P'_u(w) = \frac{\#w^{0.75}}{\sum_{w'} \#w'^{0.75}}$$

From Definition to Implementation: Rectification (1)

$$\text{With } w_k \sim P'_u(\cdot) : \quad F(\theta; w', w) \approx \frac{1}{K} \sum_{k=1}^K [u_{w_k}^\top v_w] - u_{w'}^\top v_w$$

Recall : inner product \approx vector similarity

- $u_{w'}^\top v_w$ must be positive (it's similar!)
- $u_{w_k}^\top v_w$ must be negative (it's not an observation!)

Use a Rectifier

We ignore the result of an inner product if it does not have the expected sign

- We could use $\text{ReLU}(x) = \max(x, 0)$ (maybe...)
- in word2vec use a differentiable variant `softplus`

$$\text{sp}(x) = \log(1 + \exp(x))$$

- pay attention to minus signs - in the definition of F

From Definition to Implementation: Rectification (1)

$$\begin{aligned} F(\theta; w', w) &\approx \frac{1}{K} \sum_{k=1}^K [-sp(-u_{w_k}^\top v_w)] - sp(u_{w'}^\top v_w) \\ &\quad \frac{1}{K} \sum_{k=1}^K [-\log(1 + \exp(-u_{w_k}^\top v_w))] - \log(1 + \exp(u_{w'}^\top v_w)) \\ &\quad \frac{1}{K} \sum_{k=1}^K [\log(\frac{1}{1 + \exp(-u_{w_k}^\top v_w)})] + \log(\frac{1}{1 + \exp(u_{w'}^\top v_w)}) \\ &\quad \frac{1}{K} \sum_{k=1}^K [\log(\sigma(u_{w_k}^\top v_w))] + \log(\sigma(-u_{w'}^\top v_w)) \end{aligned}$$

Can we recover contrastive estimation??

With $w_k \sim P'_u(\cdot)$: $F(\theta; w', w) \approx \frac{1}{K} \sum_{k=1}^K [\log \sigma(u_{w_k}^\top v_w)] + \log \sigma(-u_{w'}^\top v_w)$

One last step to recover the signs of contrastive estimation

- Introduction
- Word Vectors
- Wor2dVec
- Complements
- From MLE to Contrastive Learning
- Relation MLE / Contrastive
- The End

Word2vec

- Simple Idea, implements Firth's principle in an efficient way
- Probabilistic modelling : MLE/Constrative
- Many tricks to scale up:

Extensions

Dynamic Vectors: Word Vectors + Functions (NNs) to adapt Word vectors to each context (EIMO, BERT...)

Bibliography

Levy, Omer and Goldberg, Yoav (2014). *Neural Word Embedding as Implicit Matrix Factorization*, Curran Associates, Inc..

Mikolov, Tomas and Grave, Edouard and Bojanowski, Piotr and Puhrsch, Christian and Joulin, Armand (2018). *Advances in Pre-Training Distributed Word Representations*, European Language Resources Association (ELRA).