
Rewriting Modulo SMT Techniques for Parametric Analysis

Carlos Olarte

LIPN-Université Sorbonne Paris Nord.

Work based on

Joint work with: Jaime Arias, Kyungmin Bae, Peter Csaba Ölveczky, Laure
Petrucci and Fredrik Rømming.

Carlos Olarte 2

Motivation: Verification of real-time systems

• Timed automata
• Time Petri nets

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E

Pros

• Decidable fragments
• Efficient verification procedures
• Extended with parameters.

Cons

1. No support for user-defined data types
2. No support for other forms of communication and dynamic object creation/deletion

Carlos Olarte 3

Motivation: Verification of real-time systems

Rewriting logic / Maude

mod SYSTEM
eq t = t’ .
rl l => r if C .
...

Pros

• Very expressive and general
• User-defined data types
• Large applications
• Executable specification
• Maude system: full LTL model checking, reachability, ...

Cons

• Most analysis problems are undecidable
• Explicit-state analysis of real-time theories is unsound for dense time

Carlos Olarte 4

Contributions

• Interpreter: Executable rewrite semantics for parametric timed Automata
(PTA) and parametric time Petri nets with inhibitor arcs (PITPN)

• Sound and complete symbolic analysis (Rewriting + SMT)
• Analysis methods: Reachability, parameter synthesis, model checking
• New analysis:

• Full LTL model checking
• Executions with strategies
• Synthesis also of initial markings

• Novel folding procedure (termination)
• Long term goal: Symbolic analysis of real-time rewrite theories

Carlos Olarte 5

Outline

1 Rewriting logic

2 PTAs

3 PITPNs

4 Back to PTAs

5 Concluding Remarks

Carlos Olarte 6

Plan

1 Rewriting logic

2 PTAs

3 PITPNs

4 Back to PTAs

5 Concluding Remarks

Carlos Olarte 7

Rewriting Logic

• Computational logic: concurrent computation + logical deduction

• States are terms modulo E ∪ B
• Rules (crl l => r if C) in R define system transitions

Carlos Olarte 8

Rewriting Logic

• Equational theory (algebraic data types): defining states
• Rewriting rules: behavior of the system
• Executable specification

• A high-performance rewriting logic engine
• Executes admissible theories (confluence and

termination of E, coherence of R w.r.t. E, ...)
• Several generic formal analysis tools (rewrite,

search, LTL model checker, narrowing, SMT, etc).

Carlos Olarte 9

Plan

1 Rewriting logic

2 PTAs

3 PITPNs

4 Back to PTAs

5 Concluding Remarks

Carlos Olarte 10

Parametric Verification

Models: not all the choices, components, response times, are known.

Parameters

• Flexibility
• Avoid verifying the system when the unknown components change
• Central problem: Parameter synthesis

Carlos Olarte 11

Automata

idle add sugar preparing coffee

done

bStart

bSugar

cup

coffee

bStart

sleep

Carlos Olarte 12

Timed Automata

idle add sugar

x2 ≤ 3.2

preparing coffee
x2 ≤ 5.4

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ 1.5
bSugar
x1 := 0

x2 = 4.0
cup

x2 = 1.1
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

clocks and constants
Constraints for invariants and guards.

Carlos Olarte 12

Parametric Timed Automata

idle add sugar

x2 ≤ p2
preparing coffee

x2 ≤ p3

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ p1
bSugar
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

clocks and parameters

Synthesis: If p2 ≤ p3 we can have a coffee!

Carlos Olarte 12

Parametric Zone Graph (PZG)

id
le

x1 = x2
x2 ≥ 0
p1 ≥ 0
p2 ≥ 0
p3 ≥ 0

a
d
d

su
g
a
r x1 = x2

0 ≤ x2 ≤ p2
p1 ≥ 0
p3 ≥ 0

a
d
d

su
g
a
r x1 ≥ 0

p1 + x1 ≤ x2 ≤ p2
p1 ≥ 0
p3 ≥ 0

p
re
p
a
ri
n
g

co
ff
ee

x1 = x2
p2 ≤ x2 ≤ p3
p1 ≥ 0
p2 ≥ 0

a
d
d

su
g
a
r x1 ≥ 0

2p1 + x1 ≤ x2 ≤ p2
p1 ≥ 0
p3 ≥ 0

p
re
p
a
ri
n
g

co
ff
ee

p2 ≤ x2 ≤ p3
p1 + x1 ≤ x2 ≤ p2 + x1
p1 ≥ 0 d

o
n
e

0 ≤ x1 ≤ 10
p3 + x1 = x2
p1 ≥ 0
0 ≤ p2 ≤ p3

· · · · · · · · ·

bStart

bS
ug
ar

cup

bS
ug
ar

cup co
ff
ee

Carlos Olarte 13

Parametric Timed Automata

idle add sugar

x2 ≤ p2
preparing coffee

x2 ≤ p3

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ p1
bSugar
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

Imitator
• Timed model checking
• Parameter synthesis with dedicated

algorithms
• Restricted to PTA-based systems

Carlos Olarte 14

PTA/Imitator vs Rewriting Logic/Maude

PTA/Imitator

• Heuristic, optimizations and
approximation techniques.

• Decidable fragments

RL/Maude

• More expressive (alg. data types)
• Undecidable in general
• No parametric analysis

Learn and take the best from both worlds!

Carlos Olarte 15

RW semantics for PTA: The tick rule problem

tick

add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

x2 = p2

cup

vars T P1 P2 P3 : PosRat .
crl [tick] :

[add_sugar : X1 ; X2] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X2 + T <= P2 and T >= 0/1) = true [nonexec] .

• What is the value of T? Not executable rule!
• Parameters P1, P2, P3 are indeed constants (ground rewriting)

Solution: Symbolic techniques (Rewriting Modulo SMT)

Carlos Olarte 16

Symbolic semantics: rewriting modulo SMT

Constrained terms
(t ∥ ϕ)

State using
SMT variables

SMT boolean
expression

• [[(t ∥ ϕ)]]: possibly infinite set of concrete states (instances of t)
• Symbolic rewrite relation⇝: adding constraints + checking satisfiability

• A single symbolic transition captures all possible delays!

Carlos Olarte 17

RW semantics for PTA

tick

add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

x2 = p2

cup

Symbolic states: t ∥ ϕ (term + SMT boolean expression)

var T P1 P2 P3 : RExpr . --- SMT Real Variables
crl [add_sugar-tick] :

[add_sugar : X1 ; X2] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if smtCheck(X2 + T <= P2 and T >= 0/1) .

• Symbolic executions correspond to transitions of the PZG
• Executable in Maude-with-SMT

Carlos Olarte 18

PTA in Maude: Verification techniques

• Sound and complete reachability analysis:

smt-search [1] < idle ; X ; y > < P1 ; P2 ; P3 > =>*
< done ; X’ ; X’ > < P1 ; P2 ; P3 >
such that ψ .

Parameter synthesis: accumulated constraint t ∥ ϕ:

• EFϕ synthesis: reachability plus quantifier elimination ∃X.ϕ
• Only available for the SMT solver Z3.
• AG¬ϕ: finding all solution (termination problem!) and negating the result.

Carlos Olarte 19

Termination Problem

• smt-search stop exploring when it sees the same symbolic state.
• A new fresh variable is created when the tick rule is applied.
• No termination for negative queries.

new reachability command

Subsumption:
ϕu ∥ tu ⊑ ϕv ∥ tv

iff there exists θ s.t. tu = tvθ and the implication ϕu ⇒ ϕvθ holds

Theorem

The command reachability terminates iff the PZG is finite.

Carlos Olarte 20

What we have so far...

• Relatively simple model (“simple” states)
• Each PTA is compiled into a theory R
• No equations in the theory (a requirement for smt-search)
• Sound and complete reachability analysis
• “Standard” folding was enough for guaranteeing termination
• Parameter synthesis only available with Z3.
• But this is not enough for networks of PTAs with global variables.....

Carlos Olarte 21

Plan

1 Rewriting logic

2 PTAs

3 PITPNs

4 Back to PTAs

5 Concluding Remarks

Carlos Olarte 22

Petri net with inhibitor arcs

A B

t1 t2 t3

C D E

Carlos Olarte 23

Time Petri net with inhinitor arcs

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E

Carlos Olarte 24

PITPN: Parametric time Petri net with inhibitor arcs

A B

t1[al, au] t2[bl, bu] t3[cl, cu]

C D E

Synthesis problem: finding values for the parameters s.t. certain property holds

Carlos Olarte 25

Semantics

Concrete semantics: δ→;
t→

• δ→: time advances δ ∈ R+ and intervals are updated
• δ is constrained so that no enabled transition is missed

• t→: updates the marking and newly enabled transitions are reset

Symbolic semantics: δ⇒;
t⇒

• State classes (M,D)
• D is a constraint (conjunction of inequalities) on parameters Λ

Carlos Olarte 26

Representing PITPNs in Maude

Syntax and representation: [[N]]

--- Sorts and constructors
sorts Label Place Marking ...
op _|->_ : Place Nat -> Marking [ctor] .

--- Example of a concrete PITPN (no parameters)
"t1" : "p5" |-> 1 -->

"p1" |-> 1
inhibit empty in [2 : 6]

Dynamics: transition t→

crl [applyTransition] :
M : (L -> T) ; CLOCKS :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET

=> (M - PRE) + POST :
L -> 0 ; updateClocks(CLOCKS, M - PRE, NET) :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET’

if active(M, L : PRE –-> POST inhibit INHIBIT in INTERVAL)
and (T in INTERVAL) .

Carlos Olarte 27

Representing PITPNs in Maude

The tick rule: delay transition δ→

crl [tick] : M : CLOCKS : NET => M : increaseClocks(M, CLOCKS, NET, T) : NET
if T <= mte(M, CLOCKS, NET) [nonexec] .

• Enabled transitions are not missed (predicate mte)

• Non executable : T needs to be sampled

Theorem (Bisimulation)

For any PITPN N , the transition system induced by the rewrite relation in theory [[N]] is
bisimilar to the concrete semantics of N .

Carlos Olarte 28

Symbolic semantics: rewriting modulo SMT

Constrained terms
(t ∥ ϕ)

State using
SMT variables

SMT boolean
expression

• [[(t ∥ ϕ)]]: possibly infinite set of concrete states (instances of t)
• Symbolic rewrite relation⇝: adding constraints + checking satisfiability
• A single symbolic transition captures all possible delays!

crl [tick] : tickOk : M : CLOCKS : NET =>
=> tickNotOk : M : increaseClocks(M, CLOCKS, NET, T) : NET

if (T >= 0 and mte(M, CLOCKS, NET, T)) .

Theorem (Adequacy)

For any PIPTPN N , the symbolic semantics of N corresponds to⇝-transitions.

Carlos Olarte 29

Termination problem

• Each application of rule tick creates a fresh SMT variable
• Maude+SMT analyses do not terminate (even if the PZG is finite)
• Standard subsumption relation is not sufficient

New folding procedure

• New relation ⪯: based on matching + existential quantifier elimination
• Let U,V be two symbolic states and U ⇓now= tu ∥ ϕu , V ⇓now= tv ∥ ϕv

U ⪯ V iff tu = tvθ and ∃(U ⇓now) ⇒ ∃(V ⇓now)θ

• ∃(U ⇓now) hides the information about ticks.
• Soundness and completeness: [[U]] ⊆ [[V]] iff U ⪯ V
• Collapsing states: M 7→ C1 ∨ · · · ∨ Cn

Theorem (Termination)

If the symbolic transition system for N is finite, then so is the resulting symbolic rewrite
relation with ⪯-folding.

Carlos Olarte 30

Analyses

EF-synthesis (EF ϕ). Standard Maude’s search

search [1] init(net, m0, ϕ) =>* S : PHI’ ∥ (TICK : M : CLOCKS : NET)
such that smtCheck(PHI’ and not k-safe(1,M)) .

Safety synthesis (AG(¬ϕ)). Search + Folding

safety-syn(net, m0, a:Real >= 30/1 and a:Real <= 70/1, k-safe(1,M)) .

Strategies. Rewriting + Strategy

New analysis: What happens if t3 has a higher priority?

t3-first := (applyTransition[L <- "t3"] or-else all)!

Carlos Olarte 31

Analyses

Model Checking. (Search + Maude’s LTL model checker)

• The TCTL fragment ∃FJ ϕ | ∀GJ ϕ | ϕ⇝≤b ψ can be checked with search + folding
• The TCTL fragment QϕUJ ψ | ∀FJ ϕ | ∃GJ ϕ can be checked using Maude’s LTL

model checker (+ some theory transformations)
• New analysis: full LTL model checking is available to PITPNs

Parametric initial marking

• The number of tokens at a place p is an SMT integer variable
• New analysis: Initial marking synthesis

Carlos Olarte 32

Folding and synthesis

• Quantifier elimination is needed for folding and synthesis.
• Z3 was the only option available for ∃X.ϕ... but...

• We have implemented the FME procedure in Maude
• Yices2 (the fastest in our benchmarks) can be used now!

Carlos Olarte 33

Benchmarks

Carlos Olarte 34

What we have so far...

• Equations are part of the theory and smt-search cannot be used directly.
• Standard subsumption does not work.
• A new folding eliminating tick variables is needed.
• Our benchmarks look much better with our own FME procedure (Yices2).

Carlos Olarte 35

Plan

1 Rewriting logic

2 PTAs

3 PITPNs

4 Back to PTAs

5 Concluding Remarks

Carlos Olarte 36

Networks of PTAs with Variables

idle1

active1x1 ≤ delta

check1 access1

CS1turn = IDLE

try 1

x1 := 0

update 1

x1 := 0

turn := 1

x1 ≥ gamma

∧ turn = 1

access 1

turn ̸= 1

∧ x1 ≥ gamma

no access 1

enter 1

exit 1

turn := IDLE

obs waiting

obs 1 obs 2

obs violation

enter 1 enter 2

exit 1

enter 2

exit 2

enter 1

• We need an interpreter (product of automata)
• However, the interpreter is not as fast as the “compiled” PTA.

Carlos Olarte 37

Imitator vs Maude

Carlos Olarte 38

Plan

1 Rewriting logic

2 PTAs

3 PITPNs

4 Back to PTAs

5 Concluding Remarks

Carlos Olarte 39

Concluding Remarks

• Executable symbolic rewrite semantics for PTAs and PITPNs
• Sound and complete analyses: synthesis, reachability, TCTL model check
• New Analyses:

• Full LTL model checking
• Strategies
• Synthesizing initial markings

• System for quick prototyping of new analysis methods
• Concrete steps for symbolic analysis of real-time rewrite theories
• New strategy language for real-time theories (WRLA’24).
• Full LTL/CTL (symbolic) model checking (in progress).

Carlos Olarte 40

Thanks!

We acknowledge support from the PHC project Aurora AESIR and
the NATO Science for Peace and Security Programme SymSafe.

Carlos Olarte 41

	Rewriting logic
	PTAs
	PITPNs
	Back to PTAs
	Concluding Remarks

