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Motivation: Verification of real-time systems

• Timed automata
• Time Petri nets

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E

Pros

• Decidable fragments
• Efficient verification procedures
• Extended with parameters.

Cons

1. No support for user-defined data types
2. No support for other forms of communication and dynamic object creation/deletion
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Motivation: Verification of real-time systems

Rewriting logic / Maude

mod SYSTEM
eq t = t’ .
rl l => r if C .
...

Pros

• Very expressive and general
• User-defined data types
• Large applications
• Executable specification
• Maude system: full LTL model checking, reachability, ...

Cons

• Most analysis problems are undecidable
• Explicit-state analysis of real-time theories is unsound for dense time
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Contributions

• Interpreter: Executable rewrite semantics for parametric timed Automata
(PTA) and parametric time Petri nets with inhibitor arcs (PITPN)

• Sound and complete symbolic analysis (Rewriting + SMT)
• Analysis methods: Reachability, parameter synthesis, model checking
• New analysis:

• Full LTL model checking
• Executions with strategies
• Synthesis also of initial markings

• Novel folding procedure (termination)
• Long term goal: Symbolic analysis of real-time rewrite theories
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Rewriting Logic

• Computational logic: concurrent computation + logical deduction

• States are terms modulo E ∪ B
• Rules (crl l => r if C) in R define system transitions
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Rewriting Logic

• Equational theory (algebraic data types): defining states
• Rewriting rules: behavior of the system
• Executable specification

• A high-performance rewriting logic engine
• Executes admissible theories (confluence and

termination of E, coherence of R w.r.t. E, ... )
• Several generic formal analysis tools (rewrite,

search, LTL model checker, narrowing, SMT, etc).
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Parametric Verification

Models: not all the choices, components, response times, are known.

Parameters

• Flexibility
• Avoid verifying the system when the unknown components change
• Central problem: Parameter synthesis
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Automata

idle add sugar preparing coffee

done

bStart

bSugar

cup

coffee

bStart

sleep
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Timed Automata

idle add sugar

x2 ≤ 3.2

preparing coffee
x2 ≤ 5.4

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ 1.5
bSugar
x1 := 0

x2 = 4.0
cup

x2 = 1.1
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

clocks and constants
Constraints for invariants and guards.
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Parametric Timed Automata

idle add sugar

x2 ≤ p2
preparing coffee

x2 ≤ p3

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ p1
bSugar
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

clocks and parameters

Synthesis: If p2 ≤ p3 we can have a coffee!
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Parametric Zone Graph (PZG)
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Parametric Timed Automata

idle add sugar

x2 ≤ p2
preparing coffee

x2 ≤ p3

done

x1 ≤ 10

bStart
x1 := 0
x2 := 0

x1 ≥ p1
bSugar
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

bStart
x1 := 0
x2 := 0

x1 = 10
sleep

Imitator
• Timed model checking
• Parameter synthesis with dedicated

algorithms
• Restricted to PTA-based systems
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PTA/Imitator vs Rewriting Logic/Maude

PTA/Imitator

• Heuristic, optimizations and
approximation techniques.

• Decidable fragments

RL/Maude

• More expressive (alg. data types)
• Undecidable in general
• No parametric analysis

Learn and take the best from both worlds!
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RW semantics for PTA: The tick rule problem

tick

add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

x2 = p2

cup

vars T P1 P2 P3 : PosRat .
crl [tick] :

[ add_sugar : X1 ; X2 ] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if (X2 + T <= P2 and T >= 0/1) = true [nonexec] .

• What is the value of T? Not executable rule!
• Parameters P1, P2, P3 are indeed constants (ground rewriting)

Solution: Symbolic techniques (Rewriting Modulo SMT)
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Symbolic semantics: rewriting modulo SMT

Constrained terms
(t ∥ ϕ)

State using
SMT variables

SMT boolean
expression

• [[(t ∥ ϕ)]]: possibly infinite set of concrete states (instances of t)
• Symbolic rewrite relation⇝: adding constraints + checking satisfiability

• A single symbolic transition captures all possible delays!
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RW semantics for PTA

tick

add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

x2 = p2

cup

Symbolic states: t ∥ ϕ (term + SMT boolean expression)

var T P1 P2 P3 : RExpr . --- SMT Real Variables
crl [add_sugar-tick] :

[ add_sugar : X1 ; X2 ] < P1 ; P2 ; P3 > =>
< add_sugar : X1 + T ; X2 + T > < P1 ; P2 ; P3 >
if smtCheck(X2 + T <= P2 and T >= 0/1) .

• Symbolic executions correspond to transitions of the PZG
• Executable in Maude-with-SMT
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PTA in Maude: Verification techniques

• Sound and complete reachability analysis:

smt-search [1] < idle ; X ; y > < P1 ; P2 ; P3 > =>*
< done ; X’ ; X’ > < P1 ; P2 ; P3 >
such that ψ .

Parameter synthesis: accumulated constraint t ∥ ϕ:

• EFϕ synthesis: reachability plus quantifier elimination ∃X.ϕ
• Only available for the SMT solver Z3.
• AG¬ϕ: finding all solution (termination problem!) and negating the result.
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Termination Problem

• smt-search stop exploring when it sees the same symbolic state.
• A new fresh variable is created when the tick rule is applied.
• No termination for negative queries.

new reachability command

Subsumption:
ϕu ∥ tu ⊑ ϕv ∥ tv

iff there exists θ s.t. tu = tvθ and the implication ϕu ⇒ ϕvθ holds

Theorem

The command reachability terminates iff the PZG is finite.
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What we have so far...

• Relatively simple model (“simple” states)
• Each PTA is compiled into a theory R
• No equations in the theory (a requirement for smt-search)
• Sound and complete reachability analysis
• “Standard” folding was enough for guaranteeing termination
• Parameter synthesis only available with Z3.
• But this is not enough for networks of PTAs with global variables.....
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Petri net with inhibitor arcs

A B

t1 t2 t3

C D E
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Time Petri net with inhinitor arcs

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E
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PITPN: Parametric time Petri net with inhibitor arcs

A B

t1[al, au] t2[bl, bu] t3[cl, cu]

C D E

Synthesis problem: finding values for the parameters s.t. certain property holds
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Semantics

Concrete semantics: δ→;
t→

• δ→: time advances δ ∈ R+ and intervals are updated
• δ is constrained so that no enabled transition is missed

• t→: updates the marking and newly enabled transitions are reset

Symbolic semantics: δ⇒;
t⇒

• State classes (M,D)
• D is a constraint (conjunction of inequalities) on parameters Λ
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Representing PITPNs in Maude

Syntax and representation: [[N ]]

--- Sorts and constructors
sorts Label Place Marking ...
op _|->_ : Place Nat -> Marking [ctor] .

--- Example of a concrete PITPN (no parameters)
"t1" : "p5" |-> 1 -->

"p1" |-> 1
inhibit empty in [2 : 6]

Dynamics: transition t→

crl [applyTransition] :
M : (L -> T) ; CLOCKS :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET

=> (M - PRE) + POST :
L -> 0 ; updateClocks(CLOCKS, M - PRE, NET) :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET’

if active(M, L : PRE –-> POST inhibit INHIBIT in INTERVAL)
and (T in INTERVAL) .
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Representing PITPNs in Maude

The tick rule: delay transition δ→

crl [tick] : M : CLOCKS : NET => M : increaseClocks(M, CLOCKS, NET, T) : NET
if T <= mte(M, CLOCKS, NET) [nonexec] .

• Enabled transitions are not missed (predicate mte)

• Non executable : T needs to be sampled

Theorem (Bisimulation)

For any PITPN N , the transition system induced by the rewrite relation in theory [[N ]] is
bisimilar to the concrete semantics of N .
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Symbolic semantics: rewriting modulo SMT

Constrained terms
(t ∥ ϕ)

State using
SMT variables

SMT boolean
expression

• [[(t ∥ ϕ)]]: possibly infinite set of concrete states (instances of t)
• Symbolic rewrite relation⇝: adding constraints + checking satisfiability
• A single symbolic transition captures all possible delays!

crl [tick] : tickOk : M : CLOCKS : NET => ....
=> tickNotOk : M : increaseClocks(M, CLOCKS, NET, T) : NET

if (T >= 0 and mte(M, CLOCKS, NET, T)) .

Theorem (Adequacy)

For any PIPTPN N , the symbolic semantics of N corresponds to⇝-transitions.
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Termination problem

• Each application of rule tick creates a fresh SMT variable
• Maude+SMT analyses do not terminate (even if the PZG is finite)
• Standard subsumption relation is not sufficient

New folding procedure

• New relation ⪯: based on matching + existential quantifier elimination
• Let U,V be two symbolic states and U ⇓now= tu ∥ ϕu , V ⇓now= tv ∥ ϕv

U ⪯ V iff tu = tvθ and ∃(U ⇓now) ⇒ ∃(V ⇓now)θ

• ∃(U ⇓now) hides the information about ticks.
• Soundness and completeness: [[U]] ⊆ [[V]] iff U ⪯ V
• Collapsing states: M 7→ C1 ∨ · · · ∨ Cn

Theorem (Termination)

If the symbolic transition system for N is finite, then so is the resulting symbolic rewrite
relation with ⪯-folding.
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Analyses

EF-synthesis (EF ϕ). Standard Maude’s search

search [1] init(net, m0, ϕ) =>* S : PHI’ ∥ ( TICK : M : CLOCKS : NET )
such that smtCheck(PHI’ and not k-safe(1,M)) .

Safety synthesis (AG(¬ϕ)). Search + Folding

safety-syn(net, m0, a:Real >= 30/1 and a:Real <= 70/1, k-safe(1,M)) .

Strategies. Rewriting + Strategy

New analysis: What happens if t3 has a higher priority?

t3-first := ( applyTransition[ L <- "t3" ] or-else all )!
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Analyses

Model Checking. (Search + Maude’s LTL model checker)

• The TCTL fragment ∃FJ ϕ | ∀GJ ϕ | ϕ⇝≤b ψ can be checked with search + folding
• The TCTL fragment QϕUJ ψ | ∀FJ ϕ | ∃GJ ϕ can be checked using Maude’s LTL

model checker (+ some theory transformations)
• New analysis: full LTL model checking is available to PITPNs

Parametric initial marking

• The number of tokens at a place p is an SMT integer variable
• New analysis: Initial marking synthesis
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Folding and synthesis

• Quantifier elimination is needed for folding and synthesis.
• Z3 was the only option available for ∃X.ϕ... but...

• We have implemented the FME procedure in Maude
• Yices2 (the fastest in our benchmarks) can be used now!
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Benchmarks
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What we have so far...

• Equations are part of the theory and smt-search cannot be used directly.
• Standard subsumption does not work.
• A new folding eliminating tick variables is needed.
• Our benchmarks look much better with our own FME procedure (Yices2).
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Networks of PTAs with Variables

idle1

active1x1 ≤ delta

check1 access1

CS1turn = IDLE

try 1

x1 := 0

update 1

x1 := 0

turn := 1

x1 ≥ gamma

∧ turn = 1

access 1

turn ̸= 1

∧ x1 ≥ gamma

no access 1

enter 1

exit 1

turn := IDLE

obs waiting

obs 1 obs 2

obs violation

enter 1 enter 2

exit 1

enter 2

exit 2

enter 1

• We need an interpreter (product of automata)
• However, the interpreter is not as fast as the “compiled” PTA.
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Imitator vs Maude
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Concluding Remarks

• Executable symbolic rewrite semantics for PTAs and PITPNs
• Sound and complete analyses: synthesis, reachability, TCTL model check
• New Analyses:

• Full LTL model checking
• Strategies
• Synthesizing initial markings

• System for quick prototyping of new analysis methods
• Concrete steps for symbolic analysis of real-time rewrite theories
• New strategy language for real-time theories (WRLA’24).
• Full LTL/CTL (symbolic) model checking (in progress).
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