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Outline

» Studying a Forest Model
» Forest of Paracou
> A Forest Model
» A Process to Evaluate and Calibrate it
» Some challenges, experiments and questions as a newcomer

» on the models and properties involved
» on the process
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Paracou, French Guyana
Fc lics model

The plots

» 16 permanent plots (fifteen 6.25 ha
plus one 25 ha) have been censused every
1-2 years for more than 35 years.

» Each plot contains about 50 different
Families, 150-200 species and 5-8k trees
» Nine of the plots were logged in 1986.
some regions not always accessible

https ://paracou.cirad.fr/website/miscellaneous//pretty-pictures/inventory-
measurement
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Decades of Data

More than just counting trees
> ID
» geolocalisation
» family, genus and species when possible
» circumference

around 80-120 k entries for each plot
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» Number of trees : reference plots (No logging)
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plot 15 wasn't alwavs fully reachable 6/47
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Number of trees : The case of plot 15

— fixed
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A tree is alive between any two dates where it has been noted alive
Correction under 1%o for the other plots 8/47
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point
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Different recovery rates, sometimes failing to reach the starting
point
The regrowth is what we want to model.
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Model Properties

Properties we want for the model
» close enough to the data
P as few parameters as possible
» preferably identifiable parameters

» Usable to simulate perturbations

Problem
relevant models in the litterature are age-structured :
Young trees vs Mature trees which can produce seeds
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?:L:/)’U—’}/(’U)U_fu,
v = fu— hv.
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Case Study : Parameter Synthesis for a Tropical Forest Model

Model Evaluation

First Model

Antonovsky and Korzukhin (1990) :
u ~ young trees, v ~» mature trees

u=pv—y(v)u— fu,
v = fu— hv.

p ~ recruitment (birth) rate,
f ~ aging rate,
h ~»  mortality,

v(v) ~»  competition

y(w) = alv—-0b)?+ec

Widely studied and the basis of many forest dynamics models
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Three parameter regimes

h

Figure — Three possible dynamics : dying forest, or
coexistence between persistence and extinction 12 /47
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Overall shape for most parameter values

Model with linear aging rate.

750

500

Surface density of trees

0 50 H‘m 150 200
time (years)

» The oscillation seen post logging is absent using the linear aging
term £ fu
» Intuition : reaching maturity is also a kind of competition

» bounded by a maximal tree density

» fiercer among youngs
13/47
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Tuning the aging term
» Replacing + fu with
Juxvx (Thpee — (u+0)).
> Xv ~> maturing is lower when v diminishes.

» X (T — (u+v)) ~ maturing is bounded by the maximum
density.
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Tuning the aging term
» Replacing + fu with
Juxvx (Thpee — (u+0)).

> Xv ~> maturing is lower when v diminishes.
» X (T — (u+v)) ~ maturing is bounded by the maximum
density.

Model with nonlinear aging rate.
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Surface density of trees

L
0 50 100 150 200
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Evaluating the model

Now that we have a more promising candidate model, we want to
see how it behaves :

» can it fit the data?

» can common (or close enough) values of parameters fit all the
plots?

P can we determine regions of interest in the parameter space?

» can we observe strong correlation between parameters (hint at
simplification)
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Forest
Model Evaluation

Fitting the data - Properties and measure

Qualitative

the simulation stays within D% of the data, except for a maximum
of K outliers.

Quantitative
average distance to the data (as %), number of outliers

16 /47
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Model Evaluation

Defining the parameter space

Finding a plausible range for each parameter.
» bounds can be obvious (no negative mortality rate)
» bounds can come from the litterature

With some margin
» accounting for variability

P detecting False positives coming from a broad property that is
not discriminating enough

Then we need to discretize the space
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Evaluation Process - SMC

Model

g /™

/
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¥ N Simulations

Parameters
' Integration . Update

Trace
. —
Initial ,  method SCOrT
----------- -
condition
. — .
e 1 ./'

. .

N is determined based on precision guarantees.
score is the % of good simulations
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Results on the base plots
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Results on the control plots
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The overall picture
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Example of applications
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On the process

From a Newcomer perspective Pa data
E> ment : pretending to zoom in

First Impressions

Coming from Sofware Engineering Verification

In my previous world, reality was a simulation of the models,
because most of SE models are more like blueprints. Especially in
correct by construction software.
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First Impressions

Coming from Sofware Engineering Verification

In my previous world, reality was a simulation of the models,
because most of SE models are more like blueprints. Especially in
correct by construction software.

"Real world models" are different beasts.
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On model verification

From a Newcomer perspective

pretending to zoom in

Properties are complex as well

My preliminary conclusion
The fitting property inside a biologist’s brain is complex and
somehow unpredictable

distance and outliers are only a part of the equation.
There's something about shape , but how to capture it efficiently ?
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» Some unidentifiable parameters are unavoidable ( e.g.
competition terms polynom).

» But the others? How much do we trust "identifiable"
parameters ?

» How to match "non abstract parameters" with data?

» could Young/Old distribution be inferred from the data?
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On model verification
Or cess

From a Newcomer perspective

zoom in

Identifiable Parameters

» Some unidentifiable parameters are unavoidable ( e.g.
competition terms polynom).

» But the others? How much do we trust "identifiable"
parameters ?

» How to match "non abstract parameters" with data?

» could Young/Old distribution be inferred from the data?
» use GPS data to get finer grained info about density ?

» Even params that are supposed to be reflected in the data
(birthrate) won't be a perfect fit (variability +abstraction).
how far can they go from their real counterparts? They
should be correlated enough to let us make predictions

28/47
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First impression

The process from a user perspective

1. Configure the model, the parameter ranges and steps, the
property, the job dispatch

2. run it and wait (potentially for hours or days)
3. scrutinize Gb of data
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First impression

The process from a user perspective

1.

Configure the model, the parameter ranges and steps, the
property, the job dispatch

2. run it and wait (potentially for hours or days)

3. scrutinize Gb of data
4. find it weird
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The process from a user perspective

1.

AR

Configure the model, the parameter ranges and steps, the
property, the job dispatch

run it and wait (potentially for hours or days)
scrutinize Gb of data
find it weird

notice that you've mistyped a value in the parameter ranges
or a threshold in the property
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On model verification

From a Newcomer perspective

zoom in

First impression

The process from a user perspective

1.

AR

Configure the model, the parameter ranges and steps, the
property, the job dispatch

run it and wait (potentially for hours or days)
scrutinize Gb of data
find it weird

notice that you've mistyped a value in the parameter ranges
or a threshold in the property

sigh and start again

29/47
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On model verification
On the process

From a Newcomer perspective Pa data
Experiment : pretending to zoom in

What could be improved

Get the results earlier

» to detect errors and stop wasting resources scary failure
numbers in HPC

» to exploit preliminary information
P> to make decisions, change plans

» which results could be more useful to get first ?
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!".‘

Good news : low expectations
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From a Newcomer perspective Partial data

pretending

On traversal - Educated guesses ?

Two probable ecological niches
Less likely

Allow prioritization without loss or redundancy. Cost vs Precision
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On model verification

From a Newcomer perspective

Getting the size right

Computing cost/time vs

cell sizes : vs parameter sensitivity
number of simulations : precision computing the property and
additionnal statistics

Space : disk/network usage vs

storing information about visited cells : % match, avg distance,
data reached, std. dev., best results found
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Experiment : pretending to zoom in

A few strategies

>

>

Stopping simulations before the end (depends on traces
length/cache misses)

not running all simulations if the result won’t probably
reach expectations

filter or aggregate results to save space

getting partial results to test hypotheses on more
effective discretisation

exploiting more info about intra-cell variability (quasi random
instead of the costly Sobolov indices)
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Shortcuts - Max SPRT

Max SPRT basically answers questions like

If the first 10 simulation failed and we want 90% match for good
cells, how much is it worth continuing considering the precision we
aim for?
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Shortcuts - Max SPRT

Max SPRT basically answers questions like
If the first 10 simulation failed and we want 90% match for good
cells, how much is it worth continuing considering the precision we
aim for?
MaxSPRT will drastically reduce the number of simulations
But we want some info even on sub optimal regions, especially if
the variability is high
» We configured Max SPRT to be a little more tolerant than
our match threshold
» We keep additionnal info for the best simulation for each
"interesting enough "cell
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Pretending to zoom in - a hint

> We have a derived property comparing results from different
simulations.

> We also kept the position and rewards for the best simulation
found in each "interesting enough" cell.
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Pretending to zoom in - a hint

> We have a derived property comparing results from different
simulations.

> We also kept the position and rewards for the best simulation
found in each "interesting enough" cell.

We can use this to partially answer the question "would we have
found smaller common cells if we used a finer grained
discretization 7"

Which is another way to select a subset of cells where it could be
intersting to zoom in first.
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Pretending to zoom in - how

> compute distances between best parameters of each cells

» use them to determine the "virtual size" of a cell which would
have contained them all.

» sort them

» select the "smallest" virtual cells
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Pretending to zoom in - how

> compute distances between best parameters of each cells

» use them to determine the "virtual size" of a cell which would
have contained them all.

» sort them
» select the "smallest" virtual cells

we know we're missing out a lot but looking for these small cells is
a matter of seconds, not hours or days.
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Pretending to zoom in - limitations

» Larger cells make room for best individual fits
~ getting worse and worse solutions when reducing the
"virtual" size of the cell

> filtering out too much alters the distribution
~> the selection cease to be representative of good solutions
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Pretending to zoom in - limitations

» Larger cells make room for best individual fits
~ getting worse and worse solutions when reducing the
"virtual" size of the cell

> filtering out too much alters the distribution
~> the selection cease to be representative of good solutions

To know where to stop we must consider
» simulation scores (don't get too bad)

» global parameter distribution for "good" cells
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From a Newcomer perspective
Experiment : pretending to zoom in

The original distribution
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From a Newcomer perspective
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First decile

avg_c avg_birth avg_aging

avg_mortality
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From a Newcomer perspective
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From a Newcomer perspective Partial data
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From a Newcomer perspective Partial data
Experiment : pretending to zoom in

virtual zoom

Specific to derived properties
» only gives a brief impression of what smaller cells would do
» but takes seconds instead of hours or days
Automating it would require
» finding good criteria wrt distance and distribution
» different virtual cell size (distance functions)

Keep in mind that differents splits strategies change the precision
(the size of the subcells becomes heterogeneous)
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Conclusion

An interesting use case
Plenty of future work

>

>
>
>
| 4

the quest for good models is neverending
optimization and trade offs (vs guaranties)
useful and low cost metrics

exploration strategies

data mining, clustering
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Conclusion

An interesting use case

Plenty of future work
» the quest for good models is neverending
> optimization and trade offs (vs guaranties)
» useful and low cost metrics
P exploration strategies
» data mining, clustering

| guess some might be seen as peripheral to the topic, but | believe
that automating boring computations and put the user in charge of
more meaningful decisions is a worthy goal.
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